import unittest import numpy as np from op_test import OpTest class TestSumOp(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestMeanOp(OpTest): def setUp(self): self.op_type = "reduce_mean" self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float32")} self.attrs = {'dim': 1} self.outputs = {'Out': self.inputs['X'].mean(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestMaxOp(OpTest): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")} self.attrs = {'dim': -1} self.outputs = {'Out': self.inputs['X'].max(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() class TestMinOp(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")} self.attrs = {'dim': 2} self.outputs = {'Out': self.inputs['X'].min(axis=self.attrs['dim'])} def test_check_output(self): self.check_output() class TestKeepDimReduce(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float32")} self.attrs = {'dim': -2, 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum(axis=self.attrs['dim'], keepdims=True) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class Test1DReduce(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random(20).astype("float32")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestNorm(OpTest): def setUp(self): # use x away from 0 to avoid errors of numerical gradient when gradient near 0 x = np.random.random((5, 6, 10)).astype("float32") + 0.2 p = 2 dim = 1 keep_dim = False abs_out = np.absolute(x) pow_out = np.power(x, p) sum_out = np.sum(pow_out, axis=dim, keepdims=keep_dim) out = np.power(sum_out, 1. / p) self.op_type = "norm" self.inputs = {'X': x} self.attrs = {"p": p, "dim": dim, "keep_dim": keep_dim} self.outputs = { "AbsOut": abs_out, "PowOut": pow_out, "SumOut": sum_out, "Out": out } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', max_relative_error=0.01) if __name__ == '__main__': unittest.main()