/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/framework/device_worker_factory.h" #include "paddle/fluid/framework/trainer.h" #if defined PADDLE_WITH_PSCORE #include "paddle/fluid/distributed/service/communicator.h" #endif namespace paddle { namespace framework { void MultiTrainer::Initialize(const TrainerDesc& trainer_desc, Dataset* dataset) { thread_num_ = trainer_desc.thread_num(); SetDataset(dataset); ParseDumpConfig(trainer_desc); mpi_rank_ = trainer_desc.mpi_rank(); mpi_size_ = trainer_desc.mpi_size(); dump_file_num_ = trainer_desc.dump_file_num(); for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size(); i++) { need_merge_var_names_.push_back( trainer_desc.downpour_param().stat_var_names(i)); } #ifdef PADDLE_WITH_HETERPS for (int i = 0; i < thread_num_; ++i) { int num = trainer_desc.worker_places(i); platform::CUDAPlace place = platform::CUDAPlace(num); places_.push_back(place); } #endif // get filelist from trainer_desc here const std::vector readers = dataset->GetReaders(); VLOG(3) << "readers num: " << readers.size(); // change thread num to readers num thread_num_ = readers.size(); VLOG(3) << "worker thread num: " << thread_num_; workers_.resize(thread_num_); #if defined PADDLE_WITH_PSCORE if (trainer_desc.thread_barrier()) { paddle::distributed::Communicator::GetInstance()->BarrierTriggerReset( thread_num_); } #endif for (int i = 0; i < thread_num_; ++i) { workers_[i] = DeviceWorkerFactory::CreateDeviceWorker( trainer_desc.device_worker_name()); workers_[i]->SetNeedDumpField(need_dump_field_); workers_[i]->SetNeedDumpParam(need_dump_param_); workers_[i]->SetDumpFieldVector(dump_fields_); workers_[i]->SetDumpParamVector(dump_param_); workers_[i]->InitRandomDumpConfig(trainer_desc); workers_[i]->Initialize(trainer_desc); workers_[i]->SetDeviceIndex(i); workers_[i]->SetDataFeed(readers[i]); } // set debug here SetDebug(trainer_desc.debug()); } std::string MultiTrainer::GetDumpPath(int tid) { if (user_define_dump_filename_ != "") { return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(), user_define_dump_filename_.c_str(), tid); } return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(), mpi_rank_, tid); } void MultiTrainer::InitDumpEnv() { queue_ = paddle::framework::MakeChannel(); for (int i = 0; i < thread_num_; ++i) { workers_[i]->SetChannelWriter(queue_.get()); } dump_thread_num_ = 1; if (dump_file_num_ > mpi_size_) { dump_thread_num_ = dump_file_num_ / mpi_size_; if (dump_file_num_ % mpi_size_ > mpi_rank_) { dump_thread_num_ += 1; } } for (int i = 0; i < dump_thread_num_; i++) { dump_thread_.push_back( std::thread(std::bind(&TrainerBase::DumpWork, this, i))); } } // call only after all resources are set in current trainer void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program, const platform::Place& place) { for (int i = 0; i < thread_num_; ++i) { #ifdef PADDLE_WITH_HETERPS workers_[i]->SetPlace(places_[i]); workers_[i]->SetReaderPlace(places_[i]); workers_[i]->SetDeviceContext( platform::DeviceContextPool::Instance().Get(places_[i])); #else workers_[i]->SetPlace(place); workers_[i]->SetReaderPlace(place); #endif workers_[i]->SetRootScope(root_scope_); workers_[i]->CreateDeviceResource(main_program); // Program workers_[i]->BindingDataFeedMemory(); workers_[i]->CacheProgram(main_program); } #ifdef PADDLE_WITH_HETERPS for (int num = 0; num < thread_num_; ++num) { auto place = places_[num]; Scope* scope = workers_[num]->GetThreadScope(); auto& block = main_program.Block(0); for (auto& var : block.AllVars()) { if (var->Persistable()) { auto name = var->Name(); Variable* root_var = root_scope_->FindVar(name); if (!root_var) { continue; } if (root_var->IsType()) { continue; } LoDTensor* root_tensor = root_var->GetMutable(); auto* ptr = scope->Var(name); InitializeVariable(ptr, proto::VarType::LOD_TENSOR); LoDTensor* thread_tensor = ptr->GetMutable(); TensorCopy(*root_tensor, place, thread_tensor); } } } #endif } void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) { if (need_dump_field_ || need_dump_param_) { InitDumpEnv(); } VLOG(3) << "init other env done."; } Scope* MultiTrainer::GetWorkerScope(int thread_id) { return workers_[thread_id]->GetThreadScope(); } void MultiTrainer::Run() { VLOG(3) << "Going to run"; for (int thidx = 0; thidx < thread_num_; ++thidx) { if (!debug_) { threads_.push_back( std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get())); } else { threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler, workers_[thidx].get())); } } for (auto& th : threads_) { th.join(); } } #ifdef PADDLE_WITH_HETERPS void MultiTrainer::MergeDenseParam() { #ifdef PADDLE_WTIH_PSCORE auto communicator = paddle::distributed::Communicator::GetInstance(); auto& recv_ctx = communicator->GetRecvCtxMap(); Scope* thread_scope = workers_[0]->GetThreadScope(); for (auto& iter : recv_ctx) { auto& varnames = iter.second; for (auto& name : varnames) { Variable* root_var = root_scope_->FindVar(name); LoDTensor* root_tensor = root_var->GetMutable(); Variable* var = thread_scope->FindVar(name); LoDTensor* tensor = var->GetMutable(); TensorCopy((*tensor), root_tensor->place(), root_tensor); } } #endif } #endif template void MultiTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) { LoDTensor tmp_root; TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root); T* tmp_root_data = tmp_root.data(); LoDTensor tmp_tensor; TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor); T* data = tmp_tensor.data(); for (int i = 0; i < tmp_tensor.numel(); i++) { tmp_root_data[i] += data[i]; } TensorCopy(tmp_root, platform::CPUPlace(), root_tensor); } void MultiTrainer::Finalize() { if (need_dump_field_ || need_dump_param_) { FinalizeDumpEnv(); } #ifdef PADDLE_WITH_HETERPS for (size_t i = 0; i < need_merge_var_names_.size(); i++) { Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]); if (root_var == nullptr) { continue; } LoDTensor* root_tensor = root_var->GetMutable(); for (size_t j = 0; j < places_.size(); j++) { Scope* cur_thread_scope = workers_[j]->GetThreadScope(); Variable* thread_var = cur_thread_scope->FindVar(need_merge_var_names_[i]); if (thread_var == nullptr) { continue; } LoDTensor* thread_tensor = thread_var->GetMutable(); #define MergeCallback(cpp_type, proto_type) \ do { \ if (root_tensor->type() == proto_type) { \ if (thread_tensor->type() != proto_type) { \ VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \ << "] " << need_merge_var_names_[i] \ << ", root tensor type=" << root_tensor->type() \ << ", thread tensor type=" << thread_tensor->type(); \ exit(-1); \ } \ MergeToRootScope(root_tensor, thread_tensor); \ } \ } while (0) _ForEachDataType_(MergeCallback); } } MergeDenseParam(); #endif root_scope_->DropKids(); } } // end namespace framework } // end namespace paddle