# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from test_imperative_base import new_program_scope import paddle import paddle.fluid as fluid from paddle.fluid import core from paddle.fluid.framework import _test_eager_guard from paddle.fluid.optimizer import SGDOptimizer class Policy(fluid.dygraph.Layer): def __init__(self, input_size): super().__init__() self.affine1 = paddle.nn.Linear(input_size, 128) self.affine2 = paddle.nn.Linear(128, 2) self.dropout_ratio = 0.6 self.saved_log_probs = [] self.rewards = [] def forward(self, inputs): x = paddle.reshape(inputs, shape=[-1, 4]) x = self.affine1(x) x = fluid.layers.dropout(x, self.dropout_ratio) x = fluid.layers.relu(x) action_scores = self.affine2(x) return paddle.nn.functional.softmax(action_scores, axis=1) class TestImperativeMnist(unittest.TestCase): def test_mnist_float32(self): seed = 90 epoch_num = 1 state = np.random.normal(size=4).astype("float32") state_list = state.tolist() reward = np.random.random(size=[1, 1]).astype("float32") reward_list = reward.tolist() action_list = [1] action = np.array(action_list).astype("float32") mask_list = [[0, 1]] mask = np.array(mask_list).astype("float32") def run_dygraph(): paddle.seed(seed) paddle.framework.random._manual_program_seed(seed) policy = Policy(input_size=4) dy_state = fluid.dygraph.base.to_variable(state) dy_state.stop_gradient = True loss_probs = policy(dy_state) dy_mask = fluid.dygraph.base.to_variable(mask) dy_mask.stop_gradient = True loss_probs = paddle.log(loss_probs) loss_probs = paddle.multiply(loss_probs, dy_mask) loss_probs = paddle.sum(loss_probs, axis=-1) dy_reward = fluid.dygraph.base.to_variable(reward) dy_reward.stop_gradient = True loss_probs = paddle.multiply(dy_reward, loss_probs) loss = paddle.sum(loss_probs) sgd = SGDOptimizer( learning_rate=1e-3, parameter_list=policy.parameters() ) dy_param_init_value = {} dy_out = loss.numpy() for param in policy.parameters(): dy_param_init_value[param.name] = param.numpy() loss.backward() sgd.minimize(loss) policy.clear_gradients() dy_param_value = {} for param in policy.parameters(): dy_param_value[param.name] = param.numpy() return dy_out, dy_param_init_value, dy_param_value with fluid.dygraph.guard(): dy_out, dy_param_init_value, dy_param_value = run_dygraph() with fluid.dygraph.guard(): with _test_eager_guard(): ( eager_out, eager_param_init_value, eager_param_value, ) = run_dygraph() with new_program_scope(): paddle.seed(seed) paddle.framework.random._manual_program_seed(seed) exe = fluid.Executor( fluid.CPUPlace() if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0) ) policy = Policy(input_size=4) st_sgd = SGDOptimizer(learning_rate=1e-3) st_state = fluid.layers.data( name='st_state', shape=[4], dtype='float32' ) st_reward = fluid.layers.data( name='st_reward', shape=[1], dtype='float32' ) st_mask = fluid.layers.data( name='st_mask', shape=[2], dtype='float32' ) st_loss_probs = policy(st_state) st_loss_probs = paddle.log(st_loss_probs) st_loss_probs = paddle.multiply(st_loss_probs, st_mask) st_loss_probs = paddle.sum(st_loss_probs, axis=-1) st_loss_probs = paddle.multiply(st_reward, st_loss_probs) st_loss = paddle.sum(st_loss_probs) st_sgd.minimize(st_loss) # initialize params and fetch them static_param_init_value = {} static_param_name_list = [] for param in policy.parameters(): static_param_name_list.append(param.name) out = exe.run( fluid.default_startup_program(), fetch_list=static_param_name_list, ) for i in range(len(static_param_name_list)): static_param_init_value[static_param_name_list[i]] = out[i] fetch_list = [st_loss.name] fetch_list.extend(static_param_name_list) out = exe.run( fluid.default_main_program(), feed={"st_state": state, "st_reward": reward, "st_mask": mask}, fetch_list=fetch_list, ) static_param_value = {} static_out = out[0] for i in range(1, len(out)): static_param_value[static_param_name_list[i - 1]] = out[i] # np.testing.assert_allclose(dy_x_data.all(), static_x_data.all(), rtol=1e-5) for key, value in static_param_init_value.items(): self.assertTrue(np.equal(value, dy_param_init_value[key]).all()) self.assertTrue(np.equal(static_out, dy_out).all()) for key, value in static_param_value.items(): self.assertTrue(np.equal(value, dy_param_value[key]).all()) # check eager for key, value in static_param_init_value.items(): self.assertTrue(np.equal(value, eager_param_init_value[key]).all()) self.assertTrue(np.equal(static_out, eager_out).all()) for key, value in static_param_value.items(): self.assertTrue(np.equal(value, eager_param_value[key]).all()) if __name__ == '__main__': paddle.enable_static() unittest.main()