// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/memory/allocation/cuda_allocator.h" #ifdef PADDLE_WITH_CUDA #include #include #endif #ifdef PADDLE_WITH_HIP #include #endif #include #include "paddle/fluid/platform/cuda_device_guard.h" #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace memory { namespace allocation { bool CUDAAllocator::IsAllocThreadSafe() const { return true; } void CUDAAllocator::FreeImpl(phi::Allocation* allocation) { PADDLE_ENFORCE_EQ( allocation->place(), place_, platform::errors::PermissionDenied( "GPU memory is freed in incorrect device. This may be a bug")); platform::RecordedGpuFree(allocation->ptr(), allocation->size(), place_.device); delete allocation; } phi::Allocation* CUDAAllocator::AllocateImpl(size_t size) { std::call_once(once_flag_, [this] { platform::SetDeviceId(place_.device); }); void* ptr; auto result = platform::RecordedGpuMalloc(&ptr, size, place_.device); if (LIKELY(result == gpuSuccess)) { return new Allocation(ptr, size, platform::Place(place_)); } size_t avail, total, actual_avail, actual_total; bool is_limited = platform::RecordedGpuMemGetInfo( &avail, &total, &actual_avail, &actual_total, place_.device); size_t allocated = total - avail; std::string err_msg; if (is_limited) { auto limit_size = (total >> 20); err_msg = string::Sprintf( "Or set environment variable `FLAGS_gpu_memory_limit_mb` to a larger " "value. Currently `FLAGS_gpu_memory_limit_mb` is %d, so the maximum " "GPU memory usage is limited to %d MB.\n" " The command is `export FLAGS_gpu_memory_limit_mb=xxx`.", limit_size, limit_size); } std::string managed_memory_msg; if (platform::IsGPUManagedMemoryOversubscriptionSupported(place_.device)) { managed_memory_msg = string::Sprintf( "If the above ways do not solve the out of memory problem, you can try " "to use CUDA managed memory. The command is `export " "FLAGS_use_cuda_managed_memory=false`."); } PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted( "\n\nOut of memory error on GPU %d. " "Cannot allocate %s memory on GPU %d, %s memory has been allocated and " "available memory is only %s.\n\n" "Please check whether there is any other process using GPU %d.\n" "1. If yes, please stop them, or start PaddlePaddle on another GPU.\n" "2. If no, please decrease the batch size of your model. %s\n%s\n", place_.device, string::HumanReadableSize(size), place_.device, string::HumanReadableSize(allocated), string::HumanReadableSize(avail), place_.device, err_msg, managed_memory_msg)); } } // namespace allocation } // namespace memory } // namespace paddle