# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import warnings from paddle.nn.layer.norm import _BatchNormBase from paddle.framework import no_grad from paddle import _C_ops, in_dynamic_mode from paddle.fluid.layer_helper import LayerHelper class BatchNorm(paddle.nn.BatchNorm1D): r""" Applies Batch Normalization over a SparseCooTensor as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift . When use_global_stats = False, the :math:`\mu_{\beta}` and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch. Calculated as follows: .. math:: \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\ \ mini-batch\ mean \\ \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \ \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\ When use_global_stats = True, the :math:`\mu_{\beta}` and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch. They are global or running statistics (moving_mean and moving_variance). It usually got from the pre-trained model. Calculated as follows: .. math:: moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\ moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\ The normalization function formula is as follows: .. math:: \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\ y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero - :math:`\gamma` : trainable proportional parameter - :math:`\beta` : trainable deviation parameter Parameters: num_features(int): Indicate the number of channels of the input ``Tensor``. momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9. epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5. weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale` of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable. If the Initializer of the weight_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Default "NCL". use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None. name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`.. Shape: - x: A SparseCooTensor with layout = 'NDHWC'. - output: SparseCooTensor with same shape as input x. Returns: None. Examples: .. code-block:: python import paddle paddle.seed(123) channels = 3 x_data = paddle.randn((1, 6, 6, 6, channels)).astype('float32') dense_x = paddle.to_tensor(x_data) sparse_x = dense_x.to_sparse_coo(4) batch_norm = paddle.sparse.nn.BatchNorm(channels) batch_norm_out = batch_norm(sparse_x) print(batch_norm_out.shape) # [1, 6, 6, 6, 3] """ def __init__( self, num_features, momentum=0.9, epsilon=1e-05, weight_attr=None, bias_attr=None, data_format='NDHWC', use_global_stats=None, name=None, ): super(BatchNorm, self).__init__( num_features, momentum=momentum, epsilon=epsilon, weight_attr=weight_attr, bias_attr=bias_attr, data_format=data_format, use_global_stats=use_global_stats, name=name, ) def _check_data_format(self, input): if input != "NDHWC": raise ValueError('sparse BatchNorm only support layout of "NDHWC"') def forward(self, input): self._check_data_format(self._data_format) if self.training: warnings.warn( "When training, we now always track global mean and variance." ) if self._use_global_stats is None: self._use_global_stats = not self.training trainable_statistics = False else: trainable_statistics = not self._use_global_stats data_format = 'NCHW' if self._data_format[1] == 'C' else 'NHWC' if in_dynamic_mode(): batch_norm_out, _, _, _, _, _ = _C_ops.sparse_batch_norm( input, self.weight, self.bias, self._mean, self._variance, self._momentum, self._epsilon, data_format, not self.training, self._use_global_stats, trainable_statistics, False, ) return batch_norm_out else: inputs = { 'x': input, 'scale': self.weight, 'bias': self.bias, 'mean': self._mean, 'variance': self._variance, } attrs = { 'momentum': self._momentum, 'epsilon': self._epsilon, 'data_layout': data_format, 'is_test': not self.training, 'use_global_stats': self._use_global_stats, 'trainable_statistics': trainable_statistics, 'fuse_with_relu': False, } op_type = 'sparse_batch_norm' helper = LayerHelper(op_type) dtype = input.dtype mean_out = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True ) variance_out = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True ) saved_mean = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True ) saved_variance = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True ) reserve_space = helper.create_variable_for_type_inference( dtype=dtype, stop_gradient=True ) out = helper.create_sparse_variable_for_type_inference(dtype) outputs = { "out": out, "mean_out": mean_out, "variance_out": variance_out, "saved_mean": saved_mean, "saved_variance": saved_variance, "reserve_space": reserve_space, } helper.append_op( type=op_type, inputs=inputs, outputs=outputs, attrs=attrs ) return out class SyncBatchNorm(paddle.nn.SyncBatchNorm): r""" This interface is used to construct a callable object of the ``SyncBatchNorm`` class. It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can be used as a normalizer function for other operations, such as conv2d and fully connected operations. The data is normalized by the mean and variance of the channel based on whole mini-batch , which including data in all gpus. Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift `_ for more details. When model in training mode, the :math:`\\mu_{\\beta}` and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus. Calculated as follows: .. math:: \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\ \ mini-batch\ mean \\ \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \ \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\ - :math:`x` : whole mini-batch data in all gpus - :math:`m` : the size of the whole mini-batch data When model in evaluation mode, the :math:`\\mu_{\\beta}` and :math:`\sigma_{\beta}^{2}` are global statistics (moving_mean and moving_variance, which usually got from the pre-trained model). Global statistics calculated as follows: .. math:: moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\ moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\ The formula of normalization is as follows: .. math:: \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\ \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\ y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero - :math:`\gamma` : trainable scale parameter vector - :math:`\beta` : trainable shift parameter vector Note: If you want to use container to pack your model and has ``SyncBatchNorm`` in the evaluation phase, please use ``nn.LayerList`` or ``nn.Sequential`` instead of ``list`` to pack the model. Parameters: num_features(int): Indicate the number of channels of the input ``Tensor``. epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5. momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9. weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale` of this layer. If it is set to None or one attribute of ParamAttr, this layerr will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. If it is set to False, this layer will not have trainable scale parameter. Default: None. bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer. If it is set to None or one attribute of ParamAttr, this layer will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. If it is set to False, this layer will not have trainable bias parameter. Default: None. data_format(str, optional): Specify the input data format, may be "NCHW". Default "NCHW". name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`.. Shapes: input: Tensor that the dimension from 2 to 5. output: Tensor with the same shape as input. Examples: .. code-block:: python # required: gpu import paddle import paddle.sparse.nn as nn x = paddle.to_tensor([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]], dtype='float32') x = x.to_sparse_coo(len(x.shape)-1) if paddle.is_compiled_with_cuda(): sync_batch_norm = nn.SyncBatchNorm(2) hidden1 = sync_batch_norm(x) print(hidden1) # Tensor(shape=[1, 2, 2, 2], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, # indices=[[0, 0, 0, 0], # [0, 0, 1, 1], # [0, 1, 0, 1]], # values=[[-0.40730840, -0.13725480], # [-0.40730840, -1.20299828], # [ 1.69877410, -0.23414057], # [-0.88415730, 1.57439375]]) """ def __init__( self, num_features, momentum=0.9, epsilon=1e-05, weight_attr=None, bias_attr=None, data_format='NCHW', name=None, ): super(SyncBatchNorm, self).__init__( num_features, momentum, epsilon, weight_attr, bias_attr, data_format, name, ) def forward(self, x): self._check_data_format() sync_batch_norm_out, _, _, _, _, _ = _C_ops.sparse_sync_batch_norm_( x, self.weight, self.bias, self._mean, self._variance, self._momentum, self._epsilon, self._data_format, not self.training, False, False, False, ) return sync_batch_norm_out @classmethod def convert_sync_batchnorm(cls, layer): r""" Helper function to convert :class: `paddle.sparse.nn.BatchNorm` layers in the model to :class: `paddle.sparse.nn.SyncBatchNorm` layers. Parameters: layer(paddle.nn.Layer): model containing one or more `BatchNorm` layers. Returns: The original model with converted SyncBatchNorm layers. If BatchNorm layer in the model, use SyncBatchNorm layer instead. Examples: .. code-block:: python import paddle import paddle.sparse.nn as nn model = paddle.nn.Sequential(nn.Conv3D(3, 5, 3), nn.BatchNorm(5)) sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model) """ layer_output = layer if isinstance(layer, _BatchNormBase): if ( layer._weight_attr is not None and not isinstance(layer._weight_attr, bool) and layer._weight_attr.name is not None ): layer._weight_attr.name = layer._weight_attr.name + '_sync' if ( layer._bias_attr is not None and not isinstance(layer._bias_attr, bool) and layer._bias_attr.name is not None ): layer._bias_attr.name = layer._bias_attr.name + '_sync' # convert sparse BatchNorm if isinstance(layer, BatchNorm): layer_output = SyncBatchNorm( layer._num_features, layer._momentum, layer._epsilon, layer._weight_attr, layer._bias_attr, layer._data_format, layer._name, ) # convert dense BatchNorm else: layer_output = paddle.nn.SyncBatchNorm( layer._num_features, layer._momentum, layer._epsilon, layer._weight_attr, layer._bias_attr, layer._data_format, layer._name, ) if ( layer._weight_attr is not False and layer._bias_attr is not False ): with no_grad(): layer_output.weight = layer.weight layer_output.bias = layer.bias layer_output._mean = layer._mean layer_output._variance = layer._variance for name, sublayer in layer.named_children(): layer_output.add_sublayer( name, cls.convert_sync_batchnorm(sublayer) ) del layer return layer_output