# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle import _C_ops from paddle.fluid.framework import dygraph_only __all__ = [] @dygraph_only def addmm(input, x, y, beta=1.0, alpha=1.0, name=None): """ Note: This API is only supported from ``CUDA 11.0`` . Applies matrix multiplication for `x` and `y` , `input` is added to the final result. The equation is: .. math:: Out = alpha * x * y + beta * input The supported input/output Tensor layout are as follows: Note: input[SparseCsrTensor] + x[SparseCsrTensor] @ y[SparseCsrTensor] -> out[SparseCsrTensor] input[DenseTensor] + x[SparseCsrTensor] @ y[DenseTensor] -> out[DenseTensor] input[SparseCooTensor] + x[SparseCooTensor] @ y[SparseCooTensor] -> out[SparseCooTensor] input[DenseTensor] + x[SparseCooTensor] @ y[DenseTensor] -> out[DenseTensor] It supports backward propagation. Dimensions `input` , `x` , `y` must be same and >= 2D. Automatic broadcasting of Tensor is not supported. Args: input (Tensor): The input tensor. Shape is [*, M, N]. The data type can be float32 or float64. x (Tensor): The input tensor. Shape is [*, M, K]. The data type can be float32 or float64. y (Tensor): The input tensor. Shape is [*, K, N]. The data type can be float32 or float64. beta (float, optional): Coefficient of `input` . Default: 1.0 alpha (float, optional): Coefficient of `x * y` . Default: 1.0 name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Its layout is determined by that of `x` and `y` . dtype and shape is the same with `input` Examples: .. code-block:: python import paddle # dense + csr @ dense -> dense input = paddle.rand([3, 2]) crows = [0, 1, 2, 3] cols = [1, 2, 0] values = [1., 2., 3.] x = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, [3, 3]) y = paddle.rand([3, 2]) out = paddle.incubate.sparse.addmm(input, x, y, 3.0, 2.0) # dense + coo @ dense -> dense input = paddle.rand([3, 2]) indices = [[0, 1, 2], [1, 2, 0]] values = [1., 2., 3.] x = paddle.incubate.sparse.sparse_coo_tensor(indices, values, [3, 3]) y = paddle.rand([3, 2]) out = paddle.incubate.sparse.addmm(input, x, y, 3.0, 2.0) """ return _C_ops.sparse_addmm(input, x, y, alpha, beta)