# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle import paddle.fluid as fluid import numpy as np import unittest def pairwise_distance(x, y, p=2.0, epsilon=1e-6, keepdim=False): return np.linalg.norm(x - y, ord=p, axis=1, keepdims=keepdim) def test_static(x_np, y_np, p=2.0, epsilon=1e-6, keepdim=False): prog = paddle.static.Program() startup_prog = paddle.static.Program() place = fluid.CUDAPlace( 0) if paddle.fluid.core.is_compiled_with_cuda() else fluid.CPUPlace() with paddle.static.program_guard(prog, startup_prog): x = paddle.fluid.data(name='x', shape=x_np.shape, dtype=x_np.dtype) y = paddle.fluid.data(name='y', shape=y_np.shape, dtype=x_np.dtype) dist = paddle.nn.layer.distance.PairwiseDistance(p=p, epsilon=epsilon, keepdim=keepdim) distance = dist(x, y) exe = paddle.static.Executor(place) static_ret = exe.run(prog, feed={ 'x': x_np, 'y': y_np }, fetch_list=[distance]) static_ret = static_ret[0] return static_ret def test_dygraph(x_np, y_np, p=2.0, epsilon=1e-6, keepdim=False): paddle.disable_static() x = paddle.to_tensor(x_np) y = paddle.to_tensor(y_np) dist = paddle.nn.layer.distance.PairwiseDistance(p=p, epsilon=epsilon, keepdim=keepdim) distance = dist(x, y) dygraph_ret = distance.numpy() paddle.enable_static() return dygraph_ret class TestPairwiseDistance(unittest.TestCase): def test_pairwise_distance(self): all_shape = [[100, 100], [4, 5, 6, 7]] dtypes = ['float32', 'float64'] keeps = [False, True] for shape in all_shape: for dtype in dtypes: for keepdim in keeps: x_np = np.random.random(shape).astype(dtype) y_np = np.random.random(shape).astype(dtype) static_ret = test_static(x_np, y_np, keepdim=keepdim) dygraph_ret = test_dygraph(x_np, y_np, keepdim=keepdim) excepted_value = pairwise_distance(x_np, y_np, keepdim=keepdim) self.assertTrue(np.allclose(static_ret, dygraph_ret)) self.assertTrue(np.allclose(static_ret, excepted_value)) self.assertTrue(np.allclose(dygraph_ret, excepted_value)) def test_pairwise_distance_broadcast(self): shape_x = [100, 100] shape_y = [100, 1] keepdim = False x_np = np.random.random(shape_x).astype('float32') y_np = np.random.random(shape_y).astype('float32') static_ret = test_static(x_np, y_np, keepdim=keepdim) dygraph_ret = test_dygraph(x_np, y_np, keepdim=keepdim) excepted_value = pairwise_distance(x_np, y_np, keepdim=keepdim) self.assertTrue(np.allclose(static_ret, dygraph_ret)) self.assertTrue(np.allclose(static_ret, excepted_value)) self.assertTrue(np.allclose(dygraph_ret, excepted_value)) def test_pairwise_distance_different_p(self): shape = [100, 100] keepdim = False p = 3.0 x_np = np.random.random(shape).astype('float32') y_np = np.random.random(shape).astype('float32') static_ret = test_static(x_np, y_np, p=p, keepdim=keepdim) dygraph_ret = test_dygraph(x_np, y_np, p=p, keepdim=keepdim) excepted_value = pairwise_distance(x_np, y_np, p=p, keepdim=keepdim) self.assertTrue(np.allclose(static_ret, dygraph_ret)) self.assertTrue(np.allclose(static_ret, excepted_value)) self.assertTrue(np.allclose(dygraph_ret, excepted_value)) if __name__ == "__main__": unittest.main()