# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import random import numpy as np import paddle.fluid as fluid import six import paddle os.environ["CPU_NUM"] = "2" class TestFetchUnmerged(unittest.TestCase): def conv_net(self, img, label): conv_pool_1 = fluid.nets.simple_img_conv_pool(input=img, filter_size=5, num_filters=8, pool_size=2, pool_stride=2, pool_type='max', act="relu") conv_pool_1 = fluid.layers.batch_norm(conv_pool_1) conv_pool_2 = fluid.nets.simple_img_conv_pool(input=conv_pool_1, filter_size=5, num_filters=16, pool_size=2, pool_stride=2, pool_type='avg', act="relu") hidden = fluid.layers.fc(input=conv_pool_2, size=32, act='relu') prediction = fluid.layers.fc(input=hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) avg_loss = fluid.layers.mean(loss) return avg_loss, prediction def build_program(self, main, startup, is_test): with fluid.unique_name.guard(): with fluid.program_guard(main, startup): img = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') loss, prediction = self.conv_net(img, label) if not is_test: opt = fluid.optimizer.Adam(learning_rate=0.001) opt.minimize(loss) return [img, label], loss, prediction def fetch_unmerged(self, use_cuda=True): main_program = fluid.Program() startup_program = fluid.Program() feeds, loss, prediction = self.build_program(main_program, startup_program, False) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_program) build_strategy = fluid.BuildStrategy() binary = fluid.CompiledProgram(main_program).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy) iters = 2 batch_size = 16 train_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=500), batch_size=batch_size) feeder = fluid.DataFeeder(feed_list=feeds, place=place) device_num = fluid.core.get_cuda_device_count() if use_cuda else 2 for _ in range(iters): data = next(train_reader()) loss_v, prediction_v = exe.run(binary, feed=feeder.feed(data), fetch_list=[loss, prediction], return_merged=False) self.assertEqual(np.array(loss_v).shape, (device_num, 1)) self.assertEqual( np.array(prediction_v).shape, (device_num, batch_size / device_num, 10)) for _ in range(iters): data = next(train_reader()) loss_v, prediction_v = exe.run(binary, feed=feeder.feed(data), fetch_list=[loss, prediction], return_merged=True) self.assertEqual(np.array(loss_v).shape, (device_num, )) self.assertEqual(np.array(prediction_v).shape, (batch_size, 10)) def test_fetch_unmerged(self): if fluid.core.is_compiled_with_cuda(): self.fetch_unmerged(use_cuda=True) self.fetch_unmerged(use_cuda=False) def test_fetch_unmerged_parallel_graph(self): fluid.core.globals()['FLAGS_enable_parallel_graph'] = True if fluid.core.is_compiled_with_cuda(): self.fetch_unmerged(use_cuda=True) self.fetch_unmerged(use_cuda=False) fluid.core.globals()['FLAGS_enable_parallel_graph'] = False if __name__ == '__main__': unittest.main()