// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/uniform_random_kernel.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template inline void UniformRealDistribution(T *data, const int64_t &size, const float &min, const float &max, std::shared_ptr engine) { std::uniform_real_distribution dist(static_cast(min), static_cast(max)); for (int64_t i = 0; i < size; ++i) { data[i] = dist(*engine); } } template <> inline void UniformRealDistribution(phi::dtype::bfloat16 *data, const int64_t &size, const float &min, const float &max, std::shared_ptr engine) { std::uniform_real_distribution dist(min, max); for (int64_t i = 0; i < size; ++i) { data[i] = static_cast(dist(*engine)); } } template void UniformRandomRawKernel(const Context &dev_ctx, const IntArray &shape, DataType dtype, float min, float max, int seed, int diag_num, int diag_step, float diag_val, DenseTensor *out) { out->Resize(phi::make_ddim(shape.GetData())); T *data = dev_ctx.template Alloc(out); auto size = out->numel(); std::shared_ptr engine; if (seed) { engine = std::make_shared(); engine->seed(seed); } else { engine = dev_ctx.GetGenerator()->GetCPUEngine(); } UniformRealDistribution(data, size, min, max, engine); if (diag_num > 0) { PADDLE_ENFORCE_GT( size, (diag_num - 1) * (diag_step + 1), phi::errors::InvalidArgument( "ShapeInvalid: the diagonal's elements is equal (num-1) " "* (step-1) with num %d, step %d," "It should be smaller than %d, but received %d", diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size)); for (int64_t i = 0; i < diag_num; ++i) { int64_t pos = i * diag_step + i; data[pos] = diag_val; } } } template void UniformRandomKernel(const Context &dev_ctx, const IntArray &shape, DataType dtype, float min, float max, int seed, DenseTensor *out) { UniformRandomRawKernel( dev_ctx, shape, dtype, min, max, seed, 0, 0, 0.0f, out); } } // namespace phi PD_REGISTER_KERNEL(uniform_random_raw, CPU, ALL_LAYOUT, phi::UniformRandomRawKernel, float, double, phi::dtype::bfloat16) {} PD_REGISTER_KERNEL(uniform_random, CPU, ALL_LAYOUT, phi::UniformRandomKernel, float, double, phi::dtype::bfloat16) {}