# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from .common import DistributedOperatorImplContainer from .common import DistributedOperatorImpl from .common import register_distributed_operator_impl_container from .common import register_distributed_operator_impl from ..utils import is_dim_shard from ..utils import is_dim_replicate from ..utils import is_valid_list_index from ..utils import compute_compatible_dim_mapping from ..utils import compute_compatible_dims_mapping from ..utils import compute_compatible_and_update_dim_mapping from paddle.fluid import core, unique_name from paddle.fluid.framework import in_dygraph_mode from paddle.fluid.framework import Program, Parameter, Variable, program_guard from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype class DistributedReshape2(DistributedOperatorImplContainer): def __init__(self, name): super(DistributedReshape2, self).__init__() self._name = name register_distributed_operator_impl_container("reshape2", DistributedReshape2("reshape2")) class DistributedReshapeImpl0(DistributedOperatorImpl): def __init__(self, name): super(DistributedReshapeImpl0, self).__init__() self._name = name self._forward_implemented = True self._backward_implemented = True def is_input_compatible(self, dist_op): op_desc = dist_op.serial_op.desc op_dist_attr = dist_op.dist_attr x_name = op_desc.input('X')[0] out_name = op_desc.output('Out')[0] x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name) out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name) if len(x_dims_mapping) != len(out_dims_mapping) - 1: return False return True def is_output_compatible(self, dist_op): op_desc = dist_op.serial_op.desc op_dist_attr = dist_op.dist_attr x_name = op_desc.input('X')[0] out_name = op_desc.output('Out')[0] x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name) out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name) if len(x_dims_mapping) != len(out_dims_mapping) - 1: return False if is_dim_shard(out_dims_mapping[-1]): return False return True def update_dims_mapping(self, dist_op): changed = False op_desc = dist_op.serial_op.desc op_dist_attr = dist_op.dist_attr x_name = op_desc.input('X')[0] out_name = op_desc.output('Out')[0] x_shape_name = op_desc.output('XShape')[0] x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name) out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name) x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping( x_shape_name) for i in range(len(x_dims_mapping)): dim_changed = compute_compatible_and_update_dim_mapping( [x_dims_mapping, out_dims_mapping], [i, i]) if dim_changed: changed = True for i in range(len(x_dims_mapping)): x_shape_dims_mapping[i + 1] = x_dims_mapping[i] return changed @staticmethod def forward(ctx, *args, **kwargs): """ kwargs: inputname_mapping & outputname_mapping """ dist_op_context = ctx.dist_op_context main_block = dist_op_context.get_dst_main_program().global_block() src_op = dist_op_context.get_cur_src_op() rank_id = dist_op_context.get_rank_id() op_dist_attr = ctx.get_op_dist_attr_for_program(src_op) assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format( str(src_op)) # check validation of inputs / outputs for input_name in src_op.desc.input_names(): assert input_name in kwargs, "input [{}] is not given".format( input_name) assert len(kwargs[input_name]) == len( src_op.desc.input(input_name) ), "number of tensor for input [{}] is not match".format(input_name) for output_name in src_op.desc.output_names(): assert output_name in kwargs, "input [{}] is not given".format( output_name) assert len(kwargs[output_name]) == len( src_op.desc.output(output_name) ), "number of tensor for input [{}] is not match".format( output_name) X_var = main_block.var(kwargs['X'][0]) Out_var = main_block.var(kwargs['Out'][0]) XShape_var = main_block.var(kwargs['XShape'][0]) shape_list = src_op.desc.attr("shape") ShapeTensor_var_list = [] for name in kwargs['ShapeTensor']: ShapeTensor_var_list.append(name) Shape_var_list = [] for name in kwargs['Shape']: Shape_var_list.append(name) # got dist attribute info dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name) process_mesh_shape = op_dist_attr.process_mesh.topology # modify target shape for idx, axis in enumerate(dim_mapping): if axis >= 0: if len(shape_list) > idx: shape_list[idx] = shape_list[idx] // process_mesh_shape[ axis] # create op new_op_desc = main_block.desc.append_op() new_op_desc.copy_from(src_op.desc) new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list) new_op_desc.set_input('Shape', Shape_var_list) new_op_desc.set_input('X', [X_var.name]) new_op_desc.set_output('XShape', [XShape_var.name]) new_op_desc.set_output('Out', [Out_var.name]) new_op_desc._set_attr('shape', shape_list) main_block._sync_with_cpp() @staticmethod def backward(ctx, *args, **kwargs): pass class DistributedReshapeImpl1(DistributedOperatorImpl): def __init__(self, name): super(DistributedReshapeImpl1, self).__init__() self._name = name self._forward_implemented = True self._backward_implemented = True def is_input_compatible(self, dist_op): op_desc = dist_op.serial_op.desc op_dist_attr = dist_op.dist_attr x_name = op_desc.input('X')[0] out_name = op_desc.output('Out')[0] x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name) out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name) if len(x_dims_mapping) != len(out_dims_mapping) + 1: return False if is_dim_shard(x_dims_mapping[-1]): return False return True def is_output_compatible(self, dist_op): op_desc = dist_op.serial_op.desc op_dist_attr = dist_op.dist_attr x_name = op_desc.input('X')[0] out_name = op_desc.output('Out')[0] x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name) out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name) if len(x_dims_mapping) != len(out_dims_mapping) + 1: return False return True def update_dims_mapping(self, dist_op): changed = False op_desc = dist_op.serial_op.desc op_dist_attr = dist_op.dist_attr x_name = op_desc.input('X')[0] out_name = op_desc.output('Out')[0] x_shape_name = op_desc.output('XShape')[0] x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name) out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name) x_shape_dims_mapping = op_dist_attr.get_output_dims_mapping( x_shape_name) for i in range(len(out_dims_mapping)): dim_changed = compute_compatible_and_update_dim_mapping( [x_dims_mapping, out_dims_mapping], [i, i]) if dim_changed: changed = True for i in range(len(x_dims_mapping)): x_shape_dims_mapping[i + 1] = x_dims_mapping[i] return changed @staticmethod def forward(ctx, *args, **kwargs): """ kwargs: inputname_mapping & outputname_mapping """ dist_op_context = ctx.dist_op_context main_block = dist_op_context.get_dst_main_program().global_block() src_op = dist_op_context.get_cur_src_op() rank_id = dist_op_context.get_rank_id() op_dist_attr = ctx.get_op_dist_attr_for_program(src_op) assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format( str(src_op)) # check validation of inputs / outputs for input_name in src_op.desc.input_names(): assert input_name in kwargs, "input [{}] is not given".format( input_name) assert len(kwargs[input_name]) == len( src_op.desc.input(input_name) ), "number of tensor for input [{}] is not match".format(input_name) for output_name in src_op.desc.output_names(): assert output_name in kwargs, "input [{}] is not given".format( output_name) assert len(kwargs[output_name]) == len( src_op.desc.output(output_name) ), "number of tensor for input [{}] is not match".format( output_name) X_var = main_block.var(kwargs['X'][0]) Out_var = main_block.var(kwargs['Out'][0]) XShape_var = main_block.var(kwargs['XShape'][0]) shape_list = src_op.desc.attr("shape") ShapeTensor_var_list = [] for name in kwargs['ShapeTensor']: ShapeTensor_var_list.append(name) Shape_var_list = [] for name in kwargs['Shape']: Shape_var_list.append(name) # got dist attribute info dim_mapping = op_dist_attr.get_output_dims_mapping(Out_var.name) process_mesh_shape = op_dist_attr.process_mesh.topology # modify target shape for idx, axis in enumerate(dim_mapping): if axis >= 0: if len(shape_list) > idx: shape_list[idx] = shape_list[idx] // process_mesh_shape[ axis] # create op new_op_desc = main_block.desc.append_op() new_op_desc.copy_from(src_op.desc) new_op_desc.set_input('ShapeTensor', ShapeTensor_var_list) new_op_desc.set_input('Shape', Shape_var_list) new_op_desc.set_input('X', [X_var.name]) new_op_desc.set_output('XShape', [XShape_var.name]) new_op_desc.set_output('Out', [Out_var.name]) new_op_desc._set_attr('shape', shape_list) main_block._sync_with_cpp() @staticmethod def backward(ctx, *args, **kwargs): pass register_distributed_operator_impl("reshape2", DistributedReshapeImpl0("add_one_dim_back")) register_distributed_operator_impl( "reshape2", DistributedReshapeImpl1("remove_one_dim_back"))