// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/anakin/convert/pool2d.h" #include #include #include using anakin::PTuple; namespace paddle { namespace inference { namespace anakin { template void Pool2dOpConverter::operator()( const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc, const framework::Scope &scope, bool test_mode) { framework::OpDesc op_desc(op, nullptr); PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1); PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1); auto x_name = op_desc.Input("X").front(); auto y_name = op_desc.Output("Out").front(); auto op_name = op_desc.Type() + ":" + op_desc.Output("Out").front(); bool global_pooling = boost::get(op_desc.GetAttr("global_pooling")); std::string pool_type = boost::get(op_desc.GetAttr("pooling_type")); std::vector ksize = boost::get>(op_desc.GetAttr("ksize")); std::vector strides = boost::get>(op_desc.GetAttr("strides")); std::vector paddings = boost::get>(op_desc.GetAttr("paddings")); bool ceil_mode = boost::get(op_desc.GetAttr("ceil_mode")); std::string anakin_pool_type; if (pool_type == "max") { anakin_pool_type = "MAX"; } else if (pool_type == "avg") { if (paddings[0] || paddings[1]) { anakin_pool_type = "AVGEXC"; } else { anakin_pool_type = "AVG"; } } else { PADDLE_THROW("TensorRT unsupported pooling type!"); } this->engine_->AddOp(op_name, "Pooling", {x_name}, {y_name}); this->engine_->template AddOpAttr>(op_name, "pool_size", ksize); this->engine_->template AddOpAttr>(op_name, "strides", strides); this->engine_->template AddOpAttr>(op_name, "padding", paddings); this->engine_->AddOpAttr(op_name, "method", anakin_pool_type); this->engine_->AddOpAttr(op_name, "global_pooling", global_pooling); this->engine_->AddOpAttr(op_name, "cmp_out_shape_floor_as_conv", !ceil_mode); } } // namespace anakin } // namespace inference } // namespace paddle #ifdef PADDLE_WITH_CUDA using pool2d_nv_float32 = ::paddle::inference::anakin::Pool2dOpConverter<::anakin::saber::NV, ::anakin::Precision::FP32>; using pool2d_nv_int8 = ::paddle::inference::anakin::Pool2dOpConverter<::anakin::saber::NV, ::anakin::Precision::INT8>; REGISTER_CUDA_ANAKIN_OP_CONVERTER(pool2d, pool2d_nv_float32); REGISTER_CUDA_INT8_ANAKIN_OP_CONVERTER(pool2d, pool2d_nv_int8); #endif using pool2d_cpu_float32 = ::paddle::inference::anakin::Pool2dOpConverter<::anakin::saber::X86, ::anakin::Precision::FP32>; using pool2d_cpu_int8 = ::paddle::inference::anakin::Pool2dOpConverter<::anakin::saber::X86, ::anakin::Precision::INT8>; REGISTER_CPU_ANAKIN_OP_CONVERTER(pool2d, pool2d_cpu_float32); REGISTER_CPU_INT8_ANAKIN_OP_CONVERTER(pool2d, pool2d_cpu_int8);