# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import argparse import os import sys import signal import time import socket from contextlib import closing from six import string_types import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler import paddle.fluid.unique_name as nameGen from paddle.fluid import core import unittest import pickle from multiprocessing import Process import paddle.fluid.layers as layers from functools import reduce import test_collective_api_base as test_base paddle.enable_static() class TestCollectiveAllgatherAPI(test_base.TestCollectiveAPIRunnerBase): def __init__(self): self.global_ring_id = 0 def get_model(self, main_prog, startup_program, rank, dtype=None): dtype = "float32" if dtype is None else dtype with fluid.program_guard(main_prog, startup_program): tensor_list = [] tindata = layers.data(name="tindata", shape=[10, 1000], dtype=dtype) paddle.distributed.all_gather(tensor_list, tindata) return tensor_list def run_trainer(self, args): train_prog = fluid.Program() startup_prog = fluid.Program() endpoints = args["endpoints"].split(",") rank = args["trainerid"] current_endpoint = args["currentendpoint"] nranks = 2 paddle.distributed.init_parallel_env() if args['backend'] == 'nccl': device_id = int(os.getenv("FLAGS_selected_gpus", "0")) place = fluid.CUDAPlace( device_id) #if args.use_gpu else fluid.CPUPlace() elif args['backend'] == 'bkcl': device_id = int(os.getenv("FLAGS_selected_xpus", "0")) place = fluid.XPUPlace(device_id) else: place = fluid.CPUPlace() indata = test_base.create_test_data(shape=(10, 1000), dtype=args["dtype"], seed=os.getpid()) assert args[ 'static_mode'] == 1, "collective_allgather_api only support static mode" result = self.get_model(train_prog, startup_prog, rank, dtype=args["dtype"]) exe = fluid.Executor(place) exe.run(startup_prog) fetch_list = [] for elem in result: fetch_list.append(elem.name) out = exe.run(train_prog, feed={'tindata': indata}, fetch_list=fetch_list) sys.stdout.buffer.write(pickle.dumps(out)) if __name__ == "__main__": test_base.runtime_main(TestCollectiveAllgatherAPI, "allgather")