# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import op_test import numpy as np import unittest import paddle import paddle.fluid.core as core from paddle.fluid.op import Operator import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard from paddle.fluid.backward import append_backward from paddle.distributed.models.moe import utils def count(x, upper_range): res = np.zeros((upper_range, )).astype(int) for i in x.reshape(-1): if i >= 0 and i < len(res): res[i] += 1 return res @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestExpertCountOpInt64(op_test.OpTest): def setUp(self): expert_num = 16 self.op_type = "number_count" x = np.random.randint(-1, expert_num, size=(1000, 2)).astype('int64') self.inputs = {'gate_idx': x} self.outputs = {'Out': count(x, expert_num)} self.attrs = {"upper_range": expert_num} def test_forward(self): self.check_output_with_place(paddle.CUDAPlace(0)) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestExpertCountAPI(unittest.TestCase): def setUp(self): self.upper_range = 320 self.x = np.random.randint( -1, self.upper_range, size=(6000, 200)).astype('int64') self.out = count(self.x, self.upper_range) self.place = paddle.CUDAPlace(0) def test_api_static(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.fluid.data('x', self.x.shape, dtype="int64") out = utils._number_count(x, self.upper_range) exe = paddle.static.Executor(self.place) res = exe.run(feed={'x': self.x}, fetch_list=[out]) assert np.allclose(res, self.out) def test_api_dygraph(self): paddle.disable_static() x = paddle.to_tensor(self.x) out = utils._number_count(x, self.upper_range) assert np.allclose(out.numpy(), self.out) if __name__ == '__main__': paddle.enable_static() unittest.main()