# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Before this new package paddle.v2.layer, users would need to use functions in paddle.trainer_config_helpers.layers to configure networks. The Old Way: ========= This old way requires that the creation of a network be defined in a Python function, say network_config, and that this Python function being passed to paddle.trainer_config_helpers.parse_network_config for the creation of protobuf message description of this network. ```python def network_config(): img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784) inference = paddle.trainer_config_helpers.fc_layer( input=img, size=10, act=paddle.trainer_config_helpers.SoftmaxActivation()) cost = paddle.trainer_config_helpers.classification_cost( input=inference, label=paddle.trainer_config_helpers.data_layer(name="label", size=10)) proto_desc = parse_network_config(network_config) ``` When parse_network_config executes network_config, those layer definition functions like data_layer and fc_layer would change some Python global variables, so that after the execution, parse_network_config could collect information from these global variables and generates the protobuf message. The New Way: ========= In this PR, we define a function in paddle.v2.layer which creates a Python class for each layer creation function in paddle.trainer_config_helpers.layers. Users can use create a network as follows: ```python img = paddle.v2.layer.data(name="pixel", size=784) inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax()) cost = paddle.v2.layer.classification( input=inference, label=paddle.v2.layer.data(name="label", size=10)) parameters = paddle.v2.parameters.create(cost) ``` This new way doesn't require those invocations to layer definition functions to be in a Python function but could be anywhere. Also, the creation of a protobuf message is hidden in the invocation of paddle.v2.parameters.create, no longer exposed to users. """ import collections import paddle.trainer_config_helpers as conf_helps from paddle.trainer_config_helpers.config_parser_utils import \ parse_network_config as __parse__ from paddle.trainer_config_helpers.default_decorators import wrap_name_default from paddle.trainer_config_helpers.default_decorators import wrap_act_default from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default from paddle.trainer_config_helpers.layers import layer_support import data_type import activation import attr __all__ = [ 'parse_network', 'data', 'fc', 'max_id', 'classification_cost', 'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost', 'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost', 'sum_cost', 'huber_cost' 'full_matrix_projection', 'trans_full_matrix_projection', 'table_projection', 'identity_projection', 'scaling_projection', 'dotmul_projection', 'context_projection', 'conv_projection', ] def parse_network(*outputs): """ parse all output layers and then generate a model config proto. :param outputs: :return: """ def __real_func__(): context = dict() real_output = [each.to_proto(context=context) for each in outputs] conf_helps.outputs(real_output) return __parse__(__real_func__) class Layer(object): def __init__(self, name=None, parent_layers=None): assert isinstance(parent_layers, dict) self.name = name self.__parent_layers__ = parent_layers def to_proto(self, context): """ function to set proto attribute """ kwargs = dict() for layer_name in self.__parent_layers__: if not isinstance(self.__parent_layers__[layer_name], collections.Sequence): v1_layer = self.__parent_layers__[layer_name].to_proto( context=context) else: v1_layer = map(lambda x: x.to_proto(context=context), self.__parent_layers__[layer_name]) kwargs[layer_name] = v1_layer if self.name is None: return self.to_proto_impl(**kwargs) if self.name not in context: context[self.name] = self.to_proto_impl(**kwargs) return context[self.name] def to_proto_impl(self, **kwargs): raise NotImplementedError() def __convert_to_v2__(method_name, name_prefix=None, parent_names=None): if name_prefix is not None: wrapper = wrap_name_default(name_prefix=name_prefix) else: wrapper = None class V2LayerImpl(Layer): def __init__(self, name=None, **kwargs): parent_layers = dict() other_kwargs = dict() for pname in parent_names: if kwargs.has_key(pname): parent_layers[pname] = kwargs[pname] for key in kwargs.keys(): if key not in parent_names: other_kwargs[key] = kwargs[key] super(V2LayerImpl, self).__init__(name, parent_layers) self.__other_kwargs__ = other_kwargs if wrapper is not None: __init__ = wrapper(__init__) def to_proto_impl(self, **kwargs): args = dict() for each in kwargs: args[each] = kwargs[each] for each in self.__other_kwargs__: args[each] = self.__other_kwargs__[each] return getattr(conf_helps, method_name)(**args) return V2LayerImpl """ Some layer may need some special config, and can not use __convert_to_v2__ to convert. So we also need to implement some special LayerV2. """ class DataLayerV2(Layer): def __init__(self, name, type, **kwargs): assert isinstance(type, data_type.InputType) self.type = type self.__method_name__ = 'data_layer' self.__kwargs__ = kwargs super(DataLayerV2, self).__init__(name=name, parent_layers=dict()) def to_proto_impl(self, **kwargs): args = dict() args['size'] = self.type.dim for each in kwargs: args[each] = kwargs[each] for each in self.__kwargs__: args[each] = self.__kwargs__[each] return getattr(conf_helps, self.__method_name__)(name=self.name, **args) class MixedLayerV2(Layer): """ This class is use to support `with` grammar. If not, the following code could convert mixed_layer simply. mixed = __convert_to_v2__( 'mixed_layer', name_prefix='mixed', parent_names=['input']) """ class AddToSealedMixedLayerExceptionV2(Exception): def __init__(self): Exception.__init__(self) def __init__(self, size=0, input=None, name=None, act=None, bias_attr=None, layer_attr=None): self.__method_name__ = 'mixed_layer' self.finalized = False self.__parent_layers__ = dict() other_kwargs = dict() self.input_name = 'input' self.__parent_layers__[self.input_name] = [] if input is not None: self.__parent_layers__[self.input_name] = input self.name = name other_kwargs['size'] = size other_kwargs['act'] = act other_kwargs['bias_attr'] = bias_attr other_kwargs['layer_attr'] = layer_attr Layer.__init__(self, name, self.__parent_layers__) self.__other_kwargs__ = other_kwargs def __iadd__(self, other): if not self.finalized: self.__parent_layers__[self.input_name].append(other) return self else: raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2() def __enter__(self): assert len(self.__parent_layers__[self.input_name]) == 0 return self def __exit__(self, *args, **kwargs): self.finalized = True def to_proto_impl(self, **kwargs): args = dict() for each in kwargs: args[each] = kwargs[each] for each in self.__other_kwargs__: args[each] = self.__other_kwargs__[each] return getattr(conf_helps, self.__method_name__)(name=self.name, **args) @wrap_name_default("mixed") @wrap_act_default(act=conf_helps.LinearActivation()) @wrap_bias_attr_default(has_bias=False) @layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT) def mixed(size=0, name=None, input=None, act=None, bias_attr=False, layer_attr=None): return MixedLayerV2(size, input, name, act, bias_attr, layer_attr) data = DataLayerV2 fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input']) max_id = __convert_to_v2__( 'maxid_layer', name_prefix='maxid', parent_names=['input']) classification_cost = __convert_to_v2__( 'classification_cost', name_prefix='classification_cost', parent_names=['input', 'label', 'weight']) regression_cost = __convert_to_v2__( 'regression_cost', name_prefix='regression_cost', parent_names=['input', 'label', 'weight']) cross_entropy_cost = __convert_to_v2__( 'cross_entropy', name_prefix='cross_entropy', parent_names=['input', 'label']) cross_entropy_with_selfnorm_cost = __convert_to_v2__( 'cross_entropy_with_selfnorm', name_prefix='cross_entropy_with_selfnorm', parent_names=['input', 'label']) multi_binary_label_cross_entropy_cost = __convert_to_v2__( 'multi_binary_label_cross_entropy', name_prefix='multi_binary_label_cross_entropy', parent_names=['input', 'label']) rank_cost = __convert_to_v2__( 'rank_cost', name_prefix='rank_cost', parent_names=['left', 'right', 'label', 'weight']) lambda_cost = __convert_to_v2__( 'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score']) sum_cost = __convert_to_v2__( 'sum_cost', name_prefix='sum_cost', parent_names=['input']) huber_cost = __convert_to_v2__( 'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label']) # convert projection projection_list = [ # [V1_method_name], all the parent_names is `input` 'full_matrix_projection', 'trans_full_matrix_projection', 'table_projection', 'scaling_projection', 'dotmul_projection', 'context_projection', 'conv_projection', 'identity_projection', ] for prj in projection_list: globals()[prj] = __convert_to_v2__(prj, parent_names=['input']) # convert operator operator_list = [ # [V1_method_name, parent_names], ['dotmul_operator', ['a', 'b']], ['conv_operator', ['img', 'filter']] ] for op in operator_list: globals()[op[0]] = __convert_to_v2__(op[0], parent_names=op[1]) def test_projection(): """ TODO: move to tests file """ input = data(name='data', type=data_type.dense_vector(784)) word = data(name='word', type=data_type.integer_value_sequence(10000)) fc0 = fc(input=input, size=100, act=conf_helps.SigmoidActivation()) fc1 = fc(input=input, size=200, act=conf_helps.SigmoidActivation()) mixed0 = mixed( size=256, input=[ full_matrix_projection(input=fc0), full_matrix_projection(input=fc1) ]) with mixed(size=200) as mixed1: mixed1 += full_matrix_projection(input=fc0) mixed1 += identity_projection(input=fc1) table = table_projection(input=word) emb0 = mixed(size=512, input=table) with mixed(size=512) as emb1: emb1 += table scale = scaling_projection(input=fc0) scale0 = mixed(size=100, input=scale) with mixed(size=100) as scale1: scale1 += scale dotmul = dotmul_projection(input=fc0) dotmul0 = mixed(size=100, input=dotmul) with mixed(size=100) as dotmul1: dotmul1 += dotmul context = context_projection(input=fc0, context_len=5) context0 = mixed(size=100, input=context) with mixed(size=100) as context1: context1 += context conv = conv_projection( input=input, filter_size=1, num_channels=1, num_filters=128, stride=1, padding=0) conv0 = mixed(input=conv, bias_attr=True) with mixed(bias_attr=True) as conv1: conv1 += conv print parse_network(mixed0) print parse_network(mixed1) print parse_network(emb0) print parse_network(emb1) print parse_network(scale0) print parse_network(scale1) print parse_network(dotmul0) print parse_network(dotmul1) print parse_network(conv0) print parse_network(conv1) def test_operator(): """ TODO: move to tests file """ ipt0 = data(name='data', type=data_type.dense_vector(784)) ipt1 = data(name='word', type=data_type.dense_vector(128)) fc0 = fc(input=ipt0, size=100, act=conf_helps.SigmoidActivation()) fc1 = fc(input=ipt0, size=100, act=conf_helps.SigmoidActivation()) dotmul_op = dotmul_operator(a=fc0, b=fc1) dotmul0 = mixed(input=dotmul_op) with mixed() as dotmul1: dotmul1 += dotmul_op conv = conv_operator( img=ipt0, filter=ipt1, filter_size=1, num_channels=1, num_filters=128, stride=1, padding=0) conv0 = mixed(input=conv) with mixed() as conv1: conv1 += conv print parse_network(dotmul0) print parse_network(dotmul1) print parse_network(conv0) print parse_network(conv1) def test_cost(pixel, label, weight, score): hidden = fc(input=pixel, size=100, act=activation.Sigmoid(), param_attr=attr.Param(name='hidden')) inference = fc(input=hidden, size=10, act=activation.Softmax()) maxid = max_id(input=inference) cost1 = classification_cost(input=inference, label=label) cost2 = classification_cost(input=inference, label=label, weight=weight) cost3 = cross_entropy_cost(input=inference, label=label) cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label) cost5 = regression_cost(input=inference, label=label) cost6 = regression_cost(input=inference, label=label, weight=weight) cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label) cost8 = rank_cost(left=score, right=score, label=score) cost9 = lambda_cost(input=inference, score=score) cost10 = sum_cost(input=inference) cost11 = huber_cost(input=score, label=label) print parse_network(cost1, cost2) print parse_network(cost3, cost4) print parse_network(cost5, cost6) print parse_network(cost7, cost8, cost9, cost10, cost11) print parse_network(inference, maxid) if __name__ == '__main__': pixel = data(name='pixel', type=data_type.dense_vector(784)) label = data(name='label', type=data_type.integer_value(10)) weight = data(name='weight', type=data_type.dense_vector(10)) score = data(name='score', type=data_type.dense_vector(1)) test_cost(pixel, label, weight, score) test_projection() test_operator()