// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { struct DataRecord { std::vector> title1, title2, title3, l1; std::vector lod1, lod2, lod3, l1_lod; size_t batch_iter{0}, batch_size{1}, num_samples; // total number of samples DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) : batch_size(batch_size) { Load(path); } DataRecord NextBatch() { DataRecord data; size_t batch_end = batch_iter + batch_size; // NOTE skip the final batch, if no enough data is provided. if (batch_end <= title1.size()) { GetInputPerBatch(title1, &data.title1, &data.lod1, batch_iter, batch_end); GetInputPerBatch(title2, &data.title2, &data.lod2, batch_iter, batch_end); GetInputPerBatch(title3, &data.title3, &data.lod3, batch_iter, batch_end); GetInputPerBatch(l1, &data.l1, &data.l1_lod, batch_iter, batch_end); } batch_iter += batch_size; return data; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { num_lines++; std::vector data; split(line, '\t', &data); // load title1 data std::vector title1_data; split_to_int64(data[0], ' ', &title1_data); // load title2 data std::vector title2_data; split_to_int64(data[1], ' ', &title2_data); // load title3 data std::vector title3_data; split_to_int64(data[2], ' ', &title3_data); // load l1 data std::vector l1_data; split_to_int64(data[3], ' ', &l1_data); title1.push_back(std::move(title1_data)); title2.push_back(std::move(title2_data)); title3.push_back(std::move(title3_data)); l1.push_back(std::move(l1_data)); } num_samples = num_lines; } }; void PrepareInputs(std::vector *input_slots, DataRecord *data, int batch_size) { PaddleTensor title1_tensor, title2_tensor, title3_tensor, l1_tensor; title1_tensor.name = "title1"; title2_tensor.name = "title2"; title3_tensor.name = "title3"; l1_tensor.name = "l1"; auto one_batch = data->NextBatch(); // assign data TensorAssignData(&title1_tensor, one_batch.title1, one_batch.lod1); TensorAssignData(&title2_tensor, one_batch.title2, one_batch.lod2); TensorAssignData(&title3_tensor, one_batch.title3, one_batch.lod3); TensorAssignData(&l1_tensor, one_batch.l1, one_batch.l1_lod); // Set inputs. input_slots->assign({title1_tensor, title2_tensor, title3_tensor, l1_tensor}); for (auto &tensor : *input_slots) { tensor.dtype = PaddleDType::INT64; } } void SetConfig(AnalysisConfig *cfg) { cfg->SetModel(FLAGS_infer_model); cfg->DisableGpu(); cfg->SwitchSpecifyInputNames(); cfg->SwitchIrOptim(); } void SetInput(std::vector> *inputs) { DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector input_slots; int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1; LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size; for (int bid = 0; bid < epoch; ++bid) { PrepareInputs(&input_slots, &data, FLAGS_batch_size); (*inputs).emplace_back(input_slots); } } // Easy for profiling independently. TEST(Analyzer_seq_conv1, profile) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, FLAGS_num_threads); if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { // the first inference result PADDLE_ENFORCE_GT(outputs.size(), 0); auto output = outputs.back(); PADDLE_ENFORCE_EQ(output.size(), 1UL); size_t size = GetSize(output[0]); PADDLE_ENFORCE_GT(size, 0); float *result = static_cast(output[0].data.data()); // output is probability, which is in (0, 1). for (size_t i = 0; i < size; i++) { EXPECT_GT(result[i], 0); EXPECT_LT(result[i], 1); } } } // Check the fuse status TEST(Analyzer_seq_conv1, fuse_statis) { AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops); ASSERT_TRUE(fuse_statis.count("fc_fuse")); ASSERT_TRUE(fuse_statis.count("seqconv_eltadd_relu_fuse")); EXPECT_EQ(fuse_statis.at("fc_fuse"), 2); EXPECT_EQ(fuse_statis.at("seqconv_eltadd_relu_fuse"), 6); EXPECT_EQ(num_ops, 32); } // Compare result of NativeConfig and AnalysisConfig TEST(Analyzer_seq_conv1, compare) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis( reinterpret_cast(&cfg), input_slots_all); } // Compare Deterministic result TEST(Analyzer_seq_conv1, compare_determine) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareDeterministic(reinterpret_cast(&cfg), input_slots_all); } } // namespace inference } // namespace paddle