/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/pool_op.h" #include #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/platform/cudnn_helper.h" #endif #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_helper.h" #endif namespace paddle { namespace operators { int PoolOutputSize(int input_size, int filter_size, int padding_1, int padding_2, int stride, bool ceil_mode) { int output_size; if (!ceil_mode) { output_size = (input_size - filter_size + padding_1 + padding_2) / stride + 1; } else { output_size = (input_size - filter_size + padding_1 + padding_2 + stride - 1) / stride + 1; } PADDLE_ENFORCE_GT( output_size, 0, "Due to the settings of padding(%d,%d), filter_size(%d) and " "stride(%d), the output size is less than 0, please check " "again. Input_size:%d", padding_1, padding_2, filter_size, stride, input_size); return output_size; } void PoolOp::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "X(Input) of Pooling should not be null."); PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true, "Out(Output) of Pooling should not be null."); std::string pooling_type = ctx->Attrs().Get("pooling_type"); std::vector ksize = ctx->Attrs().Get>("ksize"); std::vector strides = ctx->Attrs().Get>("strides"); std::vector paddings = ctx->Attrs().Get>("paddings"); bool ceil_mode = ctx->Attrs().Get("ceil_mode"); bool adaptive = ctx->Attrs().Get("adaptive"); bool global_pooling = ctx->Attrs().Get("global_pooling"); std::string data_format = ctx->Attrs().Get("data_format"); std::string padding_algorithm = ctx->Attrs().Get("padding_algorithm"); auto in_x_dims = ctx->GetInputDim("X"); PADDLE_ENFORCE_EQ(in_x_dims.size() == 4 || in_x_dims.size() == 5, true, "Pooling intput should be 4-D or 5-D tensor."); PADDLE_ENFORCE_EQ(in_x_dims.size() - ksize.size(), 2U, "Input size and pooling size should be consistent."); PADDLE_ENFORCE_EQ(ksize.size(), strides.size(), "Strides size and pooling size should be the same."); const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); // update paddings if "SAME" or global_pooling framework::DDim data_dims; if (channel_last) { data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1); } else { data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size()); } UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm, data_dims, strides, ksize); if (global_pooling) { UpdateKsize(&ksize, data_dims); } std::vector output_shape; if (adaptive) { output_shape.insert(output_shape.end(), ksize.begin(), ksize.end()); } else { for (size_t i = 0; i < data_dims.size(); ++i) { if ((!ctx->IsRuntime()) && (data_dims[i] < 0)) { output_shape.push_back(data_dims[i]); } else { output_shape.push_back( PoolOutputSize(data_dims[i], ksize[i], paddings[2 * i], paddings[2 * i + 1], strides[i], ceil_mode)); } } } // output_N = input_N output_shape.insert(output_shape.begin(), in_x_dims[0]); // output_C = input_C if (channel_last) { output_shape.push_back(in_x_dims[in_x_dims.size() - 1]); } else { output_shape.insert(output_shape.begin() + 1, in_x_dims[1]); } ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); ctx->ShareLoD("X", "Out"); } framework::OpKernelType PoolOp::GetExpectedKernelType( const framework::ExecutionContext& ctx) const { framework::LibraryType library_{framework::LibraryType::kPlain}; std::string data_format = "AnyLayout"; framework::DataLayout layout_ = framework::StringToDataLayout(data_format); #ifdef PADDLE_WITH_CUDA if (platform::CanCUDNNBeUsed(ctx)) { library_ = framework::LibraryType::kCUDNN; } #endif #ifdef PADDLE_WITH_MKLDNN if (library_ == framework::LibraryType::kPlain && platform::CanMKLDNNBeUsed(ctx)) { // TODO(jczaja): Add support for NHWC const std::string data_format = ctx.Attr("data_format"); PADDLE_ENFORCE_NE( data_format, "NHWC", platform::errors::Unimplemented( "Pool MKLDNN grad does not support NHWC data format yet")); library_ = framework::LibraryType::kMKLDNN; layout_ = framework::DataLayout::kMKLDNN; } #endif return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(), layout_, library_); } void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, "Input(X) must not be null."); PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true, "Input(X@GRAD) should not be null."); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } framework::OpKernelType PoolOpGrad::GetExpectedKernelType( const framework::ExecutionContext& ctx) const { framework::LibraryType library_{framework::LibraryType::kPlain}; std::string data_format = "AnyLayout"; framework::DataLayout layout_ = framework::StringToDataLayout(data_format); #ifdef PADDLE_WITH_CUDA if (platform::CanCUDNNBeUsed(ctx)) { library_ = framework::LibraryType::kCUDNN; } #endif #ifdef PADDLE_WITH_MKLDNN if (library_ == framework::LibraryType::kPlain && platform::CanMKLDNNBeUsed(ctx)) { // TODO(jczaja): Add support for NHWC const std::string data_format = ctx.Attr("data_format"); PADDLE_ENFORCE_NE( data_format, "NHWC", platform::errors::Unimplemented( "Pool MKLDNN grad does not support NHWC data format yet")); library_ = framework::LibraryType::kMKLDNN; layout_ = framework::DataLayout::kMKLDNN; } #endif auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); if (input_data_type == framework::proto::VarType::FP16) { PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN, "float16 can only be used when CUDNN is used"); } return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_, library_); } void Pool2dOpMaker::Make() { AddInput( "X", "(Tensor) The input tensor of pooling operator. " "The format of input tensor is NCHW, where N is batch size, C is the " "number of channels, H is the height of the feature, " "and W is the width of the feature."); AddOutput("Out", "(Tensor) The output tensor of pooling operator. " "The format of output tensor is also NCHW, " "where N is batch size, C is the number of channels, " "H is the height of the feature, " "and W is the width of the feature."); AddAttr("pooling_type", "(string), pooling type, can be \"max\" for max-pooling " "and \"avg\" for average-pooling.") .InEnum({"max", "avg"}); AddAttr>("ksize", "(vector) The pooling window " "size(height, width) of the pooling operator. " "If global_pooling = true, ksize and paddings will " "be ignored."); // TODO(Chengduo): Add checker. // (Currently, // TypedAttrChecker don't support vector type.) AddAttr( "global_pooling", "(bool) Whether to use the global pooling. " "If global_pooling = true, kernel size and paddings will be ignored. " "Default False.") .SetDefault(false); AddAttr>("strides", "(vector, default {1, 1}), strides(height, " "width) of pooling operator.") .SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently, // TypedAttrChecker don't support vector type.) AddAttr>( "paddings", "(vector, default {0,0}), paddings(height_top, height_bottom, " "width_left, wifth_right) of pooling operator." "If global_pooling = true, paddings and kernel size will be ignored.") .SetDefault({0, 0}); AddAttr( "exclusive", "(bool) When true, will exclude the zero-padding in the " "averaging calculating, otherwise, include the zero-padding. Note, it " "is only used when pooling_type is avg. The default is True. " "Default True.") .SetDefault(true); AddAttr( "adaptive", "(bool) When true, will perform adaptive pooling instead, " "output shape in H and W dimensions will be same as ksize, input data " "will be divided into grids specify by ksize averagely and perform " "pooling in each grid area to get output pooling value. " "Default False.") .SetDefault(false); AddAttr( "use_cudnn", "(bool) Only used in cudnn kernel, need install cudnn. Default False") .SetDefault(false); AddAttr( "ceil_mode", "(bool) Whether to use the ceil function to calculate " "output height and width. False is the default. If it is set to False, " "the floor function will be used. Default False") .SetDefault(false); AddAttr("use_mkldnn", "(bool) Only used in mkldnn kernel. Default False") .SetDefault(false); AddAttr("use_quantizer", "(bool) " "Set to true for operators that should be quantized and use " "int8 kernel. " "Only used on CPU. Default False") .SetDefault(false); AddAttr( "data_format", "(string, default NCHW) Only used in " "An optional string from: \"NHWC\", \"NCHW\". " "Defaults to \"NHWC\". Specify the data format of the output data, " "the input will be transformed automatically. ") .SetDefault("NCHW"); AddAttr("is_test", "(bool, default false) Set to true for inference only, false " "for training. Some layers may run faster when this is true.") .SetDefault(false); AddAttr( "padding_algorithm", "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\"," "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. " "Set to \"SAME\" or \"VALID\" for algorithm of padding. ") .SetDefault("EXPLICIT"); // TODO(dzhwinter): need to registered layout transform function AddComment(R"DOC( This operation calculates the pooling output based on the input, pooling_type and pool_size, pool_stride, pool_padding parameters. Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. Parameters(pool_size, pool_stride, pool_padding) hold two integer elements. These two elements represent height and width, respectively. The input(X) size and output(Out) size may be different. Example: Input: X shape: $(N, C, H_{in}, W_{in})$ Output: Out shape: $(N, C, H_{out}, W_{out})$ For pool_padding = "SAME": $$ H_{out} = \\frac{(H_{in} + strides[0] - 1)}{strides[0]} $$ $$ W_{out} = \\frac{(W_{in} + strides[1] - 1)}{strides[1]} $$ For pool_padding = "VALID": $$ H_{out} = \\frac{(H_{in} - ksize[0] + strides[0])}{strides[0]} $$ $$ W_{out} = \\frac{(W_{in} - ksize[1] + strides[1])}{strides[1]} $$ For ceil_mode = false: $$ H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom}{strides[0]} + 1 $$ $$ W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right}{strides[1]} + 1 $$ For ceil_mode = true: $$ H_{out} = \\frac{(H_{in} - ksize[0] + pad_height_top + pad_height_bottom + strides[0] - 1)}{strides[0]} + 1 $$ $$ W_{out} = \\frac{(W_{in} - ksize[1] + pad_width_left + pad_width_right + strides[1] - 1)}{strides[1]} + 1 $$ For exclusive = false: $$ hstart = i * strides[0] - pad_height_top $$ $$ hend = hstart + ksize[0] $$ $$ wstart = j * strides[1] - pad_width_left $$ $$ wend = wstart + ksize[1] $$ $$ Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]} $$ For exclusive = true: $$ hstart = max(0, i * strides[0] - pad_height_top) $$ $$ hend = min(H, hstart + ksize[0]) $$ $$ wstart = max(0, j * strides[1] - pad_width_left) $$ $$ wend = min(W, wstart + ksize[1]) $$ $$ Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)} $$ )DOC"); } class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput { protected: std::unordered_map GetInputOutputWithSameType() const override { return std::unordered_map{{"X", /*->*/ "Out"}}; } }; void Pool3dOpMaker::Make() { AddInput("X", "(Tensor) The input tensor of pooling operator. " "The format of input tensor is NCDHW or NDHWC, where N is batch " "size, C is " "the number of channels, and D, H and W is the depth, height and " "width of " "the feature, respectively."); AddOutput("Out", "(Tensor) The output tensor of pooling operator." "The format of output tensor is also NCDHW or NDHWC, " "where N is batch size, C is " "the number of channels, and D, H and W is the depth, height and " "width of the feature, respectively."); AddAttr("pooling_type", "(string) Pooling type, can be \"max\" for max-pooling " "and \"avg\" for average-pooling.") .InEnum({"max", "avg"}); AddAttr>( "ksize", "(vector) The pooling window size(depth, height, " "width) of pooling operator. " "If global_pooling = true, ksize and paddings will " "be ignored."); // TODO(Chengduo): Add checker. // (Currently, // TypedAttrChecker don't support vector type.) AddAttr( "global_pooling", "(bool) Whether to use the global pooling. " "If global_pooling = true, kernel size and paddings will be ignored. " "Default False") .SetDefault(false); AddAttr>( "strides", "(vector, default {1,1,1}) Strides(depth, height, " "width) of the pooling operator.") .SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently, // TypedAttrChecker don't support vector type.) AddAttr>( "paddings", "(vector, default {0,0,0}), paddings(pad_depth_front, " "pad_depth_back, " "pad_height_top, pad_height_bottom, pad_width_left, pad_width_right" ") of pooling operator. " "If global_pooling = true, ksize and paddings will be ignored.") .SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently, // TypedAttrChecker don't support vector type.) AddAttr( "exclusive", "(bool) When true, will exclude the zero-padding in the " "averaging calculating, otherwise, include the zero-padding. Note, it " "is only used when pooling_type is avg. The default is True. " "Default True") .SetDefault(true); AddAttr( "adaptive", "(bool) When true, will perform adaptive pooling instead, " "output shape in H and W dimensions will be same as ksize, input data " "will be divided into grids specify by ksize averagely and perform " "pooling in each grid area to get output pooling value. " "Default False") .SetDefault(false); AddAttr( "use_cudnn", "(bool) Only used in cudnn kernel, need install cudnn. Default False") .SetDefault(false); AddAttr( "ceil_mode", "(bool) Whether to use the ceil function to calculate " "output height and width. False is the default. If it is set to False, " "the floor function will be used. Default False") .SetDefault(false); AddAttr("use_mkldnn", "(bool) Only used in mkldnn kernel. Default False") .SetDefault(false); AddAttr( "data_format", "(string, default NCDHW) Only used in " "An optional string from: \"NDHWC\", \"NCDHW\". " "Defaults to \"NDHWC\". Specify the data format of the output data, " "the input will be transformed automatically. ") .SetDefault("NCDHW"); AddAttr( "padding_algorithm", "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\"," "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. " "Set to \"SAME\" or \"VALID\" for algorithm of padding. ") .SetDefault("EXPLICIT"); // TODO(dzhwinter): need to registered layout transform function AddComment(R"DOC( This operation calculates the output based on the input, pooling_type, pool_size, pool_stride, and pool_padding parameters. Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch size, C is the number of channels, and D, H and W are the depth, height and width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding) hold three integer elements. These three elements represent depth, height and width, respectively. The input(X) size and output(Out) size may be different. Example: Input: X shape: $(N, C, D_{in}, H_{in}, W_{in})$ Output: Out shape: $(N, C, D_{out}, H_{out}, W_{out})$ For pool_padding = "SAME": $$ D_{out} = \\frac{(D_{in} + strides[0] - 1)}{strides[0]} $$ $$ H_{out} = \\frac{(H_{in} + strides[1] - 1)}{strides[1]} $$ $$ W_{out} = \\frac{(W_{in} + strides[2] - 1)}{strides[2]} $$ For pool_padding = "VALID": $$ D_{out} = \\frac{(D_{in} - ksize[0] + strides[0])}{strides[0]} $$ $$ H_{out} = \\frac{(H_{in} - ksize[1] + strides[1])}{strides[1]} $$ $$ W_{out} = \\frac{(W_{in} - ksize[2] + strides[2])}{strides[2]} $$ For ceil_mode = false: $$ D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back)}{strides[0]} + 1 $$ $$ H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom)}{strides[1]} + 1 $$ $$ W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right)}{strides[2]} + 1 $$ For ceil_mode = true: $$ D_{out} = \\frac{(D_{in} - ksize[0] + pad_depth_front + pad_depth_back + strides[0] -1)}{strides[0]} + 1 $$ $$ H_{out} = \\frac{(H_{in} - ksize[1] + pad_height_top + pad_height_bottom + strides[1] -1)}{strides[1]} + 1 $$ $$ W_{out} = \\frac{(W_{in} - ksize[2] + pad_width_left + pad_width_right + strides[2] -1)}{strides[2]} + 1 $$ For exclusive = false: $$ dstart = i * strides[0] - pad_depth_front $$ $$ dend = dstart + ksize[0] $$ $$ hstart = j * strides[1] - pad_height_top $$ $$ hend = hstart + ksize[1] $$ $$ wstart = k * strides[2] - pad_width_left $$ $$ wend = wstart + ksize[2] $$ $$ Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{ksize[0] * ksize[1] * ksize[2]} $$ For exclusive = true: $$ dstart = max(0, i * strides[0] - pad_depth_front) $$ $$ dend = min(D, dstart + ksize[0]) $$ $$ hstart = max(0, j * strides[1] - pad_height_top) $$ $$ hend = min(H, hstart + ksize[1]) $$ $$ wstart = max(0, k * strides[2] - pad_width_left) $$ $$ wend = min(W, wstart + ksize[2]) $$ $$ Output(i ,j, k) = \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)} $$ )DOC"); } } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker, ops::PoolOpInferVarType, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad); REGISTER_OP_CPU_KERNEL( pool2d, ops::PoolKernel, ops::PoolKernel); REGISTER_OP_CPU_KERNEL( pool2d_grad, ops::PoolGradKernel, ops::PoolGradKernel); REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker, ops::PoolOpInferVarType, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad); REGISTER_OP_CPU_KERNEL( pool3d, ops::PoolKernel, ops::PoolKernel); REGISTER_OP_CPU_KERNEL( pool3d_grad, ops::PoolGradKernel, ops::PoolGradKernel);