# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle import paddle.fluid as fluid import os import signal import subprocess import time import unittest import sys from op_test import OpTest from paddle.fluid.trainer_desc import DistMultiTrainer from paddle.fluid.device_worker import DownpourSGD from google.protobuf import text_format import paddle.fluid.incubate.fleet.parameter_server.pslib.ps_pb2 as pslib class TestListenAndServOp(OpTest): def setUp(self): pass def test_device_work_use_cvm(self): if sys.platform == 'win32' or sys.platform == 'sys.platform': pass else: print(sys.platform) cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt" os.system(cmd) x = fluid.layers.data(name='x', shape=[1], dtype='int64') x_emb = fluid.layers.embedding( input=x, size=[1, 2], is_distributed=True) y_predict = fluid.layers.fc(input=x_emb, size=1, act=None) y = fluid.layers.data(name='y', shape=[1], dtype='float32') cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) ps_param = pslib.PSParameter() with open("fleet_desc.prototxt") as f: text_format.Merge(f.read(), ps_param) fleet_desc = ps_param exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) opt_info = {} main_program = fluid.default_main_program() program_id = str(id(avg_cost.block.program)) program_configs = {} program_configs[program_id] = { "pull_sparse": [0], "push_sparse": [0] } program_configs[program_id]["pull_dense"] = [1] program_configs[program_id]["push_dense"] = [1] worker_skipped_ops = ["lookup_table", "lookup_table_grad"] opt_info["program_configs"] = program_configs opt_info["trainer"] = "DistMultiTrainer" opt_info["device_worker"] = "DownpourSGD" opt_info["optimizer"] = "DownpourSGD" opt_info["fleet_desc"] = ps_param opt_info["worker_skipped_ops"] = worker_skipped_ops opt_info["use_cvm"] = True opt_info["scale_datanorm"] = -1 opt_info["dump_slot"] = False opt_info["stat_var_names"] = [] main_program._fleet_opt = opt_info trainer = DistMultiTrainer() trainer._set_program(main_program) device_worker = DownpourSGD() device_worker._set_fleet_desc(fleet_desc) trainer._set_device_worker(device_worker) trainer._set_fleet_desc(fleet_desc) trainer._gen_trainer_desc() cmd = "rm fleet_desc.prototxt*" os.system(cmd) def test_device_work(self): if sys.platform == 'win32' or sys.platform == 'sys.platform': pass else: print(sys.platform) cmd = "wget --no-check-certificate https://pslib.bj.bcebos.com/fleet_desc.prototxt" os.system(cmd) x = fluid.layers.data(name='x', shape=[1], dtype='int64') x_emb = fluid.layers.embedding( input=x, size=[1, 2], is_distributed=True) y_predict = fluid.layers.fc(input=x_emb, size=1, act=None) y = fluid.layers.data(name='y', shape=[1], dtype='float32') cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(cost) ps_param = pslib.PSParameter() with open("fleet_desc.prototxt") as f: text_format.Merge(f.read(), ps_param) fleet_desc = ps_param exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) opt_info = {} main_program = fluid.default_main_program() program_id = str(id(avg_cost.block.program)) program_configs = {} program_configs[program_id] = { "pull_sparse": [0], "push_sparse": [0] } program_configs[program_id]["pull_dense"] = [1] program_configs[program_id]["push_dense"] = [1] worker_skipped_ops = ["lookup_table", "lookup_table_grad"] opt_info["program_configs"] = program_configs opt_info["trainer"] = "DistMultiTrainer" opt_info["device_worker"] = "DownpourSGD" opt_info["optimizer"] = "DownpourSGD" opt_info["fleet_desc"] = ps_param opt_info["worker_skipped_ops"] = worker_skipped_ops opt_info["use_cvm"] = False opt_info["scale_datanorm"] = -1 opt_info["dump_slot"] = False opt_info["stat_var_names"] = [] main_program._fleet_opt = opt_info trainer = DistMultiTrainer() trainer._set_program(main_program) device_worker = DownpourSGD() device_worker._set_fleet_desc(fleet_desc) trainer._set_device_worker(device_worker) trainer._set_fleet_desc(fleet_desc) trainer._gen_trainer_desc() cmd = "rm fleet_desc.prototxt*" os.system(cmd) if __name__ == "__main__": unittest.main()