/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/full_kernel.h" #include "paddle/fluid/memory/allocation/allocator_facade.h" #include "paddle/phi/api/lib/utils/allocator.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { namespace tests { namespace framework = paddle::framework; using DDim = phi::DDim; TEST(DEV_API, empty) { // 1. create input phi::CPUContext dev_ctx; dev_ctx.SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); dev_ctx.Init(); // 2. test API auto out = phi::Empty(dev_ctx, {3, 2}, phi::DataType::INT32); // 3. check result ASSERT_EQ(out.dims().size(), 2); ASSERT_EQ(out.dims()[0], 3); ASSERT_EQ(out.numel(), 6); ASSERT_EQ(out.meta().dtype, phi::DataType::INT32); ASSERT_EQ(out.meta().layout, phi::DataLayout::NCHW); } TEST(DEV_API, empty_like) { // 1. create tensor const auto alloc = std::make_unique( paddle::platform::CPUPlace()); phi::DenseTensor dense_x(alloc.get(), phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({3, 2}), phi::DataLayout::NCHW)); auto* dense_x_data = dense_x.mutable_data(paddle::platform::CPUPlace()); dense_x_data[0] = 0; // 2. test API phi::CPUContext dev_ctx; dev_ctx.SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); dev_ctx.Init(); auto out = phi::EmptyLike(dev_ctx, dense_x); // 3. check result ASSERT_EQ(out.dims().size(), 2); ASSERT_EQ(out.dims()[0], 3); ASSERT_EQ(out.numel(), 6); ASSERT_EQ(out.meta().dtype, phi::DataType::FLOAT32); ASSERT_EQ(out.meta().layout, phi::DataLayout::NCHW); } TEST(DEV_API, full) { // 1. create input float val = 1.0; // 2. test API phi::CPUContext dev_ctx; dev_ctx.SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); dev_ctx.Init(); auto out = phi::Full(dev_ctx, {3, 2}, val, phi::DataType::FLOAT32); // 3. check result ASSERT_EQ(out.dims().size(), 2); ASSERT_EQ(out.dims()[0], 3); ASSERT_EQ(out.numel(), 6); ASSERT_EQ(out.meta().dtype, phi::DataType::FLOAT32); ASSERT_EQ(out.meta().layout, phi::DataLayout::NCHW); auto* actual_result = out.data(); for (auto i = 0; i < 6; i++) { ASSERT_NEAR(actual_result[i], val, 1e-6f); } } TEST(DEV_API, full_like) { // 1. create tensor const auto alloc = std::make_unique( paddle::platform::CPUPlace()); phi::DenseTensor dense_x(alloc.get(), phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({3, 2}), phi::DataLayout::NCHW)); auto* dense_x_data = dense_x.mutable_data(paddle::platform::CPUPlace()); dense_x_data[0] = 0; float val = 1.0; phi::CPUContext dev_ctx; dev_ctx.SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance() .GetAllocator(paddle::platform::CPUPlace()) .get()); dev_ctx.Init(); // 2. test API auto out = phi::FullLike(dev_ctx, dense_x, val); // 3. check result ASSERT_EQ(out.dims().size(), 2); ASSERT_EQ(out.dims()[0], 3); ASSERT_EQ(out.numel(), 6); ASSERT_EQ(out.meta().dtype, phi::DataType::FLOAT32); ASSERT_EQ(out.meta().layout, phi::DataLayout::NCHW); auto* actual_result = out.data(); for (auto i = 0; i < 6; i++) { ASSERT_NEAR(actual_result[i], val, 1e-6f); } } } // namespace tests } // namespace phi