// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/dropout_grad_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/eigen/common.h" namespace phi { template void DropoutGradRawKernel(const Context& dev_ctx, const DenseTensor& mask, const DenseTensor& out_grad, float p, bool is_test, const std::string& mode, DenseTensor* x_grad) { auto* grad_x = x_grad; auto* grad_y = &out_grad; grad_x->mutable_data(dev_ctx.GetPlace()); auto dX = EigenVector::Flatten(*grad_x); auto dY = EigenVector::Flatten(*grad_y); auto& place = *dev_ctx.eigen_device(); auto& dropout_implementation = mode; if (is_test == true) { if (dropout_implementation == "upscale_in_train") { dX.device(place) = static_cast(1) * dY; } else { dX.device(place) = dY * static_cast(1.0f - p); } } else { auto M = EigenVector::Flatten(mask); if (dropout_implementation == "upscale_in_train") { if (p == 1.0f) { dX.device(place) = static_cast(0) * dY; } else { dX.device(place) = dY * M.cast() / static_cast(1.0f - p); } } else { dX.device(place) = dY * M.cast(); } } } } // namespace phi PD_REGISTER_KERNEL(dropout_grad, CPU, ALL_LAYOUT, phi::DropoutGradRawKernel, float, double, phi::dtype::bfloat16) {}