# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.compiler as compiler from paddle.fluid.executor import global_scope import paddle.optimizer import paddle.static from paddle.fluid.tests.unittests.ipu.op_test_ipu import (IPUOpTest, np_dtype_to_fluid_str) paddle.enable_static() @unittest.skipIf(not paddle.is_compiled_with_ipu(), "core is not compiled with IPU") class TestBase(IPUOpTest): def setUp(self): self.set_atol() self.set_training() self.set_feed() self.set_feed_attr() self.set_attrs() def set_feed(self): self.feed = { "x": np.random.uniform(size=[1, 3, 10, 10]).astype('float32'), } def set_feed_attr(self): self.feed_shape = [x.shape for x in self.feed.values()] self.feed_list = list(self.feed.keys()) self.feed_dtype = [ np_dtype_to_fluid_str(x.dtype) for x in self.feed.values() ] def set_attrs(self): self.attrs = { "shape": [30, 10], "inplace": True, } def _test_base(self, run_ipu=True): scope = fluid.core.Scope() main_prog = paddle.static.Program() startup_prog = paddle.static.Program() SEED = self.SEED main_prog.random_seed = SEED startup_prog.random_seed = SEED with fluid.scope_guard(scope): with paddle.static.program_guard(main_prog, startup_prog): x = paddle.static.data( name=self.feed_list[0], shape=self.feed_shape[0], dtype=self.feed_dtype[0]) add1 = paddle.fluid.layers.elementwise_add(x, x) reshape = paddle.fluid.layers.reshape(add1, **self.attrs) add2 = paddle.fluid.layers.elementwise_add(reshape, reshape) scale1 = paddle.fluid.layers.scale(add2) scale2 = paddle.fluid.layers.scale(scale1, scale=1.3, bias=0.5) scale3 = paddle.fluid.layers.scale(scale2, scale=2, bias=0.7) fetch_list = [scale3.name] if run_ipu: place = paddle.IPUPlace() else: place = paddle.CPUPlace() exe = paddle.static.Executor(place) exe.run(startup_prog) scale1_out = main_prog.global_block().ops[4].output("Out")[0] main_prog.global_block().ops[4]._rename_output(scale1_out, add2.name) main_prog.global_block().ops[5]._rename_input(scale1_out, add2.name) if run_ipu: feed_list = self.feed_list ipu_strategy = compiler.get_ipu_strategy() ipu_strategy.is_training = self.is_training program = compiler.IPUCompiledProgram( main_prog, ipu_strategy=ipu_strategy).compile(feed_list, fetch_list) else: program = main_prog result = exe.run(program, feed=self.feed, fetch_list=fetch_list) return result[0] def test_base(self): res0 = self._test_base(True) res1 = self._test_base(False) self.assertTrue( np.allclose( res0.flatten(), res1.flatten(), atol=self.atol)) self.assertTrue(res0.shape == res1.shape) if __name__ == "__main__": unittest.main()