// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/operators/distributed/communicator.h" namespace paddle { namespace operators { namespace distributed { using LoDTensor = framework::LoDTensor; using SelectedRows = framework::SelectedRows; TEST(communicator, merge_lod_tensors) { auto cpu_place = platform::CPUPlace(); auto dims = framework::make_ddim({2, 3}); std::vector> in_vars; float out_value = 0; for (auto i = 0; i < 10; ++i) { auto var = std::make_shared(); in_vars.emplace_back(var); auto *tensor = var->GetMutable(); auto *data = tensor->mutable_data(dims, cpu_place); for (auto j = 0; j < tensor->numel(); ++j) { data[j] = static_cast(i); } out_value += static_cast(i); } const std::string out_name = "Out"; std::unique_ptr scope; scope.reset(new framework::Scope()); scope->Var(out_name); for (auto i = 0; i < 10; ++i) { MergeVars(out_name, in_vars, scope.get()); } auto &out_tensor = scope->FindVar(out_name)->Get(); auto *out_data = out_tensor.data(); ASSERT_EQ(out_tensor.dims(), dims); for (auto i = 0; i < out_tensor.numel(); ++i) { ASSERT_EQ(out_data[i], out_value); } } TEST(communicator, merge_selected_rows) { auto cpu_place = platform::CPUPlace(); int64_t width = 10; std::vector> in_vars; const int64_t height = 100; for (auto i = 0; i < 10; ++i) { std::vector rows; for (auto k = 0; k <= i; ++k) { rows.push_back(k); } auto var = std::make_shared(); in_vars.emplace_back(var); auto *slr = var->GetMutable(); slr->set_height(height); slr->set_rows(rows); auto dims = framework::make_ddim({static_cast(rows.size()), width}); auto *data = slr->mutable_value()->mutable_data(dims, cpu_place); for (size_t i = 0; i < rows.size(); ++i) { for (auto j = 0; j < width; ++j) { data[i * width + j] = static_cast(rows[i]); } } } const std::string out_name = "Out"; std::unique_ptr scope; scope.reset(new framework::Scope()); scope->Var(out_name); for (auto i = 0; i < 10; ++i) { MergeVars(out_name, in_vars, scope.get()); } auto &out_slr = scope->FindVar(out_name)->Get(); auto &out_t = out_slr.value(); auto *out_data = out_t.data(); ASSERT_EQ(out_t.dims(), framework::make_ddim({10, width})); std::vector out_values; out_values.reserve(10); for (auto i = 0; i < 10; ++i) { out_values.push_back(static_cast(i * (10 - i))); } for (size_t i = 0; i < out_slr.rows().size(); ++i) { ASSERT_EQ(out_slr.rows()[i], static_cast(i)); for (auto j = 0; j < width; ++j) { ASSERT_EQ(out_data[i * width + j], out_values[i]); } } } } // namespace distributed } // namespace operators } // namespace paddle