# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define random api import paddle.fluid as fluid from paddle.fluid import core __all__ = [] def seed(seed): """ Sets the seed for global default generator, which manages the random number generation. Args: seed(int): The random seed to set. It is recommend to set a large int number. Returns: Generator: The global default generator object. Examples: .. code-block:: python import paddle gen = paddle.seed(102) """ # TODO(zhiqiu): 1. remove program.random_seed when all random-related op upgrade # 2. support gpu generator by global device seed = int(seed) if core.is_compiled_with_cuda(): for i in range(core.get_cuda_device_count()): core.default_cuda_generator(i).manual_seed(seed) elif core.is_compiled_with_xpu(): for i in range(core.get_xpu_device_count()): core.default_xpu_generator(i).manual_seed(seed) return core.default_cpu_generator().manual_seed(seed) def get_rng_state(device=None): """ Get all random states of random generators of specified device. Args: device(str): This parameter determines the specific running device. It can be ``cpu``, ``gpu``, ``xpu``, Default is None. If None, return the generators of current device (specified by ``set_device``). Returns: GeneratorState: object. Examples: .. code-block:: python import paddle sts = paddle.get_rng_state() """ state_list = [] if device is None: place = fluid.framework._current_expected_place() else: place = device._convert_to_place(device) if isinstance(place, core.CPUPlace): state_list.append(core.default_cpu_generator().get_state()) elif isinstance(place, core.CUDAPlace): for i in range(core.get_cuda_device_count()): state_list.append(core.default_cuda_generator(i).get_state()) elif isinstance(place, core.XPUPlace): for i in range(core.get_xpu_device_count()): state_list.append(core.default_xpu_generator(i).get_state()) else: raise ValueError( "get_rng_state is not implemented for current device: {}".format( place ) ) return state_list def get_cuda_rng_state(): """ Get random state of cuda generators. Args: None. Returns: GeneratorState: object. Examples: .. code-block:: python import paddle sts = paddle.get_cuda_rng_state() """ state_list = [] if core.is_compiled_with_cuda(): for i in range(core.get_cuda_device_count()): state_list.append(core.default_cuda_generator(i).get_state()) return state_list def set_rng_state(state_list, device=None): """ Sets generator state for all device generators. Args: state_list(list|tuple): The device states to set back to device generators. state_list is obtained from get_rng_state(). device(str): This parameter determines the specific running device. It can be ``cpu``, ``gpu``, ``xpu``, Default is None. If None, return the generators of current device (specified by ``set_device``). Returns: None. Examples: .. code-block:: python import paddle sts = paddle.get_rng_state() paddle.set_rng_state(sts) """ if device is None: place = fluid.framework._current_expected_place() else: place = device._convert_to_place(device) if isinstance(place, core.CUDAPlace): if not len(state_list) == core.get_cuda_device_count(): raise ValueError( "Length of gpu state list shoule be equal to the gpu device count" ) for i in range(core.get_cuda_device_count()): core.default_cuda_generator(i).set_state(state_list[i]) elif isinstance(place, core.XPUPlace): if not len(state_list) == core.get_xpu_device_count(): raise ValueError( "Length of xpu state list shoule be equal to the xpu device count" ) for i in range(core.get_xpu_device_count()): core.default_xpu_generator(i).set_state(state_list[i]) elif isinstance(place, core.CPUPlace): if not len(state_list) == 1: raise ValueError("Length of cpu state list shoule be equal to 1") core.default_cpu_generator().set_state(state_list[0]) else: raise ValueError( "set_rng_state is not implemented for current device: {}".format( place ) ) def set_cuda_rng_state(state_list): """ Sets generator state for all cuda generators. Args: state_list(list|tuple): The cuda states to set back to cuda generators. state_list is obtained from get_cuda_rng_state(). Returns: None. Examples: .. code-block:: python import paddle sts = paddle.get_cuda_rng_state() paddle.set_cuda_rng_state(sts) """ if core.is_compiled_with_cuda(): if not len(state_list) == core.get_cuda_device_count(): raise ValueError( "Length of cuda state list shoule be equal to the cuda device count" ) for i in range(core.get_cuda_device_count()): core.default_cuda_generator(i).set_state(state_list[i]) def _manual_program_seed(seed): """ Sets global seed for generating random numbers. NOTE(zhiqiu): This is the original implemention of seed. Keeps it temporally since CUDA generator is not developed, so we need it in the unittest. Args: seed(int): The random seed to set. It is recommend to set a large int number. Returns: None """ fluid.default_main_program().random_seed = seed fluid.default_startup_program().random_seed = seed program = fluid.Program() program.global_seed(seed) def set_random_seed_generator(name, seed): core.set_random_seed_generator(name, seed) def get_random_seed_generator(name): return core.get_random_seed_generator(name)