/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/math/matrix_solve.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/solve_op.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/phi/kernels/funcs/blas/blas.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace paddle { namespace platform { class CUDADeviceContext; } // namespace platform } // namespace paddle namespace paddle { namespace operators { namespace math { template class MatrixSolveFunctor; template class MatrixSolveFunctor { public: void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& a, const framework::Tensor& b, framework::Tensor* out) { #ifndef PADDLE_WITH_HIP // solve the equation: Ax = B, // use cuBlas cublasgetrfBatched funcion to performs the LU // factorization of each matrix A, // and then use cuBlas cublasgetriBatched function to solve the // equation after LU factorization. // ref: // https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-getrfbatched const auto& a_dims = a.dims(); const int a_rank = a_dims.size(); int n = a_dims[a_rank - 1]; int lda = n; int batch_size = a_rank > 2 ? a.numel() / (n * n) : 1; const auto& b_dims = b.dims(); const int b_rank = b_dims.size(); int nrhs = b_dims[b_rank - 1]; int ldb = b_dims[b_rank - 2]; // make sure the out dims is right out->Resize(b_dims); out->mutable_data(context.GetPlace()); // copy input A to a temporary tensor tmp_a, // LU factorization, written back to original matrix A, so in the beginning, // it's necessary to create a temporary tensor tmp_a. Tensor tmp_a(a.dtype()); tmp_a.Resize(a.dims()); tmp_a.mutable_data(context.GetPlace()); framework::TensorCopy(a, context.GetPlace(), &tmp_a); // copy input B to a temporary tensor tmp_b, and transpose tmp_b, // because cuBlas assumes column-major while Paddle uses row-majar. Tensor tmp_b(b.type()); const auto& new_dims_vec = getNewDimsVec(b_dims); tmp_b.Resize(phi::make_ddim(new_dims_vec)); tmp_b.mutable_data(context.GetPlace()); phi::funcs::TransposeNormal trans; std::vector new_axis = getNewAxis(b_rank); trans(context, b, &tmp_b, new_axis); const T* a_data_in_gpu = tmp_a.data(); const T* b_data_in_gpu = tmp_b.data(); std::vector cpu_ptrs(batch_size * 2); for (int i = 0; i < batch_size; ++i) { cpu_ptrs[i] = a_data_in_gpu + i * n * n; cpu_ptrs[i + batch_size] = b_data_in_gpu + i * n * nrhs; } // Copy the addresses of A and tmp_b from host to device. memory::allocation::AllocationPtr tmp_gpu_ptrs_data = memory::Alloc(context, cpu_ptrs.size() * sizeof(T*)); memory::Copy(context.GetPlace(), tmp_gpu_ptrs_data->ptr(), platform::CPUPlace(), static_cast(cpu_ptrs.data()), cpu_ptrs.size() * sizeof(T*), context.stream()); T** gpu_tmp_b_ptrs = reinterpret_cast(tmp_gpu_ptrs_data->ptr()) + batch_size; // Allocate device memory for BatchedGETRF's info and pivots. int num_ints = n < 32 ? batch_size : batch_size * (n + 1); memory::allocation::AllocationPtr tmp_gpu_info_data = memory::Alloc(context, num_ints * sizeof(int)); int* gpu_info_ptr = reinterpret_cast(tmp_gpu_info_data->ptr()); auto blas = phi::funcs::GetBlas(context); // only for singular checking std::vector info; info.resize(batch_size); int* gpu_pivot_ptr = reinterpret_cast(tmp_gpu_info_data->ptr()) + batch_size; // This function performs the LU factorization of each matrix A by the // equation A = L * U. L and U are written back to original matrix A, // and diagonal elements of L are discarded. blas.BatchedGETRF(n, reinterpret_cast(tmp_gpu_ptrs_data->ptr()), gpu_pivot_ptr, gpu_info_ptr, batch_size); // check whether BatchedGETRF is executed successfully or not memory::Copy(platform::CPUPlace(), info.data(), context.GetPlace(), gpu_info_ptr, sizeof(int) * batch_size, context.stream()); for (int i = 0; i < batch_size; ++i) { PADDLE_ENFORCE_EQ(info[i], 0, platform::errors::PreconditionNotMet( "For batch [%d]: U(%d, %d) is zero, singular U. " "Please check the matrix value and change it to a " "non-singular matrix", i, info[i], info[i])); } // hold the result code from BatchedGETRS int host_info = 0; // to solve the equation after LU factorization CBLAS_TRANSPOSE transA = CblasTrans; blas.BatchedGETRS(transA, n, nrhs, reinterpret_cast(tmp_gpu_ptrs_data->ptr()), lda, gpu_pivot_ptr, gpu_tmp_b_ptrs, ldb, &host_info, batch_size); // check whether BatchedGETRS is executed successfully or not PADDLE_ENFORCE_EQ(host_info, 0, platform::errors::InvalidArgument( "The [%d]'th argument to cublas*getrsBatched had " "an illegal value.", -host_info)); // transpose tmp_b to get the final result in row-major form. phi::funcs::TransposeNormal trans2; trans2(context, tmp_b, out, new_axis); #else compute_solve_eigen(context, a, b, out); #endif } }; template class MatrixSolveFunctor; template class MatrixSolveFunctor; } // namespace math } // namespace operators } // namespace paddle