// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "paddle/fluid/operators/distributed/parameter_recv.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/operators/distributed/distributed.h" #include "paddle/fluid/operators/distributed/rpc_client.h" #include "paddle/fluid/operators/distributed/variable_response.h" #include "paddle/fluid/operators/distributed_ops/send_recv_util.h" #include "paddle/fluid/operators/strided_memcpy.h" namespace paddle { namespace operators { namespace distributed { using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor; using SelectedRows = framework::SelectedRows; using DDim = framework::DDim; template void ParameterRecv::operator()(const RpcContext &rpc_ctx, const framework::Scope &scope) { VLOG(3) << "ParameterRecv in"; std::unique_ptr local_scope = scope.NewTmpScope(); platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto &cpu_ctx = *pool.Get(platform::CPUPlace()); distributed::RPCClient *rpc_client = distributed::RPCClient::GetInstance(0); auto *recv_var = scope.FindVar(rpc_ctx.var_name); std::vector recved_tensors; // recv all vars to local scope if (recv_var->IsType()) { std::vector rets; for (size_t i = 0; i < rpc_ctx.splited_var_names.size(); i++) { auto &recv_var_name = rpc_ctx.splited_var_names[i]; framework::Tensor *t = local_scope->Var(recv_var_name)->GetMutable(); recved_tensors.push_back(t); VLOG(3) << "recv " << recv_var_name << " from " << rpc_ctx.epmap[i]; rets.push_back(rpc_client->AsyncGetVar(rpc_ctx.epmap[i], cpu_ctx, *local_scope.get(), recv_var_name, recv_var_name)); } for (size_t i = 0; i < rets.size(); i++) { PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient"); } } else { PADDLE_THROW("unsupported var type to recv!"); } // concat recved tensor into one var { size_t output_offset = 0; framework::Tensor *recv_tensor = recv_var->GetMutable(); auto dev_ctx = paddle::platform::CPUDeviceContext(); int64_t recv_numel = 0; for (auto *in : recved_tensors) { recv_numel += in->numel(); auto in_stride = framework::stride_numel(in->dims()); auto out_stride = framework::stride_numel(recv_tensor->dims()); StridedNumelCopyWithAxis( dev_ctx, 0, recv_tensor->data() + output_offset, out_stride, in->data(), in_stride, in_stride[0]); output_offset += in_stride[0]; } PADDLE_ENFORCE_EQ(recv_numel, recv_tensor->numel()); } VLOG(3) << "ParameterRecv out"; } template struct ParameterRecv; }; // namespace distributed }; // namespace operators }; // namespace paddle