# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import unittest import numpy as np from op_test import OpTest def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y): BATCH_SIZE = 2 M = 3 N = 4 K = 5 if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y): K = 1 if dim_X == 1: if transpose_X: shape_X = [M] else: shape_X = [K] if dim_Y == 1: if transpose_Y: shape_Y = [N] else: shape_Y = [K] if dim_X >= 2: if transpose_X: shape_X = [K, M] else: shape_X = [M, K] if dim_X == 3: shape_X = [BATCH_SIZE] + shape_X if dim_Y >= 2: if transpose_Y: shape_Y = [N, K] else: shape_Y = [K, N] if dim_Y == 3: shape_Y = [BATCH_SIZE] + shape_Y return shape_X, shape_Y def reference_matmul(X, Y, transpose_X=False, transpose_Y=False): """Reference forward implementation using np.matmul.""" # np.matmul does not support the transpose flags, so we manually # transpose X and Y appropriately. if transpose_X: if X.ndim == 1: X = X.reshape((X.size, 1)) elif X.ndim == 2: X = X.T elif X.ndim == 3: X = np.transpose(X, (0, 2, 1)) else: raise ValueError('X must have between 1 and 3 dimensions') if transpose_Y: if Y.ndim == 1: Y = Y.reshape((1, Y.size)) elif Y.ndim == 2: Y = Y.T elif Y.ndim == 3: Y = np.transpose(Y, (0, 2, 1)) else: raise ValueError('Y must have between 1 and 3 dimensions') Out = np.matmul(X, Y) if not Out.shape: # We do not support 0-dimensional Tensors (scalars). So where # np.matmul outputs a scalar, we must convert to a Tensor of # shape (1, ) instead. # Everywhere else, we are compatible with np.matmul. Out = np.array([Out], dtype="float32") return Out class Generator(object): def setUp(self): self.op_type = "matmul" X = np.random.random(self.shape_X).astype("float32") Y = np.random.random(self.shape_Y).astype("float32") Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y) self.inputs = {'X': X, 'Y': Y} self.attrs = { 'transpose_X': self.transpose_X, 'transpose_Y': self.transpose_Y } self.outputs = {'Out': Out} def test_check_output(self): self.check_output(atol=1e-2) def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) def test_check_grad_ignore_x(self): self.check_grad( ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) def test_check_grad_ignore_y(self): self.check_grad( ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) # Generate test cases for all possibilities for dim_X in [1, 2, 3]: for dim_Y in [1, 2, 3]: for transpose_X in [False, True]: for transpose_Y in [False, True]: test_name = ( 'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format( dim_X, dim_Y, transpose_X, transpose_Y)) shape_X, shape_Y = generate_compatible_shapes( dim_X, dim_Y, transpose_X, transpose_Y) test_class = type(test_name, (Generator, OpTest), { 'shape_X': shape_X, 'shape_Y': shape_Y, 'transpose_X': transpose_X, 'transpose_Y': transpose_Y, }) globals()[test_name] = test_class if __name__ == "__main__": unittest.main()