// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/gaussian_random_kernel.h" #include "paddle/phi/backends/onednn/onednn_reuse.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void GaussianRandomKernel(const Context& ctx, const IntArray& shape, float mean, float std, int seed, DataType dtype, DenseTensor* out) { std::normal_distribution dist(mean, std); std::shared_ptr engine; if (seed) { engine = std::make_shared(); engine->seed(seed); } else { engine = ctx.GetGenerator()->GetCPUEngine(); } T* data = ctx.template Alloc(out); for (int64_t i = 0; i < out->numel(); ++i) { data[i] = dist(*engine); } out->Resize(phi::make_ddim(shape.GetData())); dnnl::memory::desc out_mem_desc( vectorize(out->dims()), funcs::ToOneDNNDataType(out->dtype()), funcs::GetPlainOneDNNFormat(out->dims().size())); out->set_mem_desc(out_mem_desc); } } // namespace phi PD_REGISTER_KERNEL( gaussian_random, OneDNN, ONEDNN, phi::GaussianRandomKernel, float) {}