// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" namespace paddle { namespace framework { class InferShapeContext; class VarDesc; } // namespace framework } // namespace paddle namespace paddle { namespace operators { class ReshapePrimOp : public framework::OperatorBase { public: ReshapePrimOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : framework::OperatorBase(type, inputs, outputs, attrs) {} void RunImpl(const framework::Scope &scope, const platform::Place &dev_place) const override { PADDLE_THROW(platform::errors::Unimplemented( "Prim operator reshape_p should not be excuted directly")); } }; class ReshapePrimOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of reshape_p op."); AddOutput("Y", "(Tensor), The output tensor of reshape_p op."); AddAttr>( "shape", "(std::vector) Target shape of reshape_p operator."); AddComment(R"DOC( Autograd primitive reshape_p operator. )DOC"); } }; static int64_t product(const std::vector &shape) { int64_t rslt = 1; for (size_t i = 0; i < shape.size(); ++i) { rslt *= shape[i]; } return rslt; } class ReshapePrimOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { framework::InferShapeVarPtr x_var_ptr = ctx->GetInputVarPtrs("X")[0]; framework::InferShapeVarPtr y_var_ptr = ctx->GetOutputVarPtrs("Y")[0]; framework::VarDesc *x_var = BOOST_GET(framework::VarDesc *, x_var_ptr); auto x_shape = x_var->GetShape(); auto shape = ctx->Attrs().Get>("shape"); PADDLE_ENFORCE_EQ(product(x_shape), product(shape), platform::errors::InvalidArgument( "The input tensor can't be reshaped to target shape, " "the input tensor has %d elements but target shape " "contains %d elements", product(x_shape), product(shape))); BOOST_GET(framework::VarDesc *, y_var_ptr)->SetShape(shape); } }; class ReshapePrimOpVarTypeInference : public framework::StaticGraphVarTypeInference { public: void operator()(framework::InferVarTypeContext *ctx) const override { auto x_name = Input(ctx, "X")[0]; auto y_name = Output(ctx, "Y")[0]; SetType(ctx, y_name, GetType(ctx, x_name)); SetDataType(ctx, y_name, GetDataType(ctx, x_name)); } }; } // namespace operators } // namespace paddle REGISTER_OPERATOR(reshape_p, paddle::operators::ReshapePrimOp, paddle::operators::ReshapePrimOpMaker, paddle::operators::ReshapePrimOpShapeInference, paddle::operators::ReshapePrimOpVarTypeInference);