// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" namespace paddle { namespace framework { class InferShapeContext; class VarDesc; } // namespace framework } // namespace paddle namespace paddle { namespace operators { class ReducePrimOp : public framework::OperatorBase { public: ReducePrimOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : framework::OperatorBase(type, inputs, outputs, attrs) {} void RunImpl(const framework::Scope &scope, const platform::Place &dev_place) const override { PADDLE_THROW(platform::errors::Unimplemented( "Prim operator reduce_p should not be excuted directly")); } }; class ReducePrimOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of reduce_p op."); AddOutput("Y", "(Tensor), The output tensor of reduce_p op."); AddAttr>( "axis", "(std::vector) The axis along which to reduce on. Must be in " "range [-rank(input), rank(input)]. If `axis[i] < 0`, the axis[i] to " "reduce is `rank + axis[i]`."); AddAttr("keepdim", "(bool, default false) " "If true, retain the reduced axis with length 1.") .SetDefault(false); AddComment(R"DOC( Autograd primitive reduce_p operator. )DOC"); } }; class ReducePrimOpShapeInference : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext *ctx) const override { framework::InferShapeVarPtr x_var_ptr = ctx->GetInputVarPtrs("X")[0]; framework::InferShapeVarPtr y_var_ptr = ctx->GetOutputVarPtrs("Y")[0]; framework::VarDesc *x_var = BOOST_GET(framework::VarDesc *, x_var_ptr); auto x_shape = x_var->GetShape(); auto axis = ctx->Attrs().Get>("axis"); auto keepdim = ctx->Attrs().Get("keepdim"); if (keepdim) { for (size_t i = 0; i < axis.size(); ++i) { x_shape[axis[i]] = 1; } } else { const int kDelFlag = -2; for (size_t i = 0; i < axis.size(); ++i) { x_shape[axis[i]] = kDelFlag; } x_shape.erase(remove(x_shape.begin(), x_shape.end(), kDelFlag), x_shape.end()); } if (!keepdim && x_shape.size() == 0) { x_shape.push_back(1); } BOOST_GET(framework::VarDesc *, y_var_ptr)->SetShape(x_shape); } }; class ReducePrimOpVarTypeInference : public framework::StaticGraphVarTypeInference { public: void operator()(framework::InferVarTypeContext *ctx) const override { auto x_name = Input(ctx, "X")[0]; auto y_name = Output(ctx, "Y")[0]; SetType(ctx, y_name, GetType(ctx, x_name)); SetDataType(ctx, y_name, GetDataType(ctx, x_name)); } }; } // namespace operators } // namespace paddle REGISTER_OPERATOR(reduce_p, paddle::operators::ReducePrimOp, paddle::operators::ReducePrimOpMaker, paddle::operators::ReducePrimOpShapeInference, paddle::operators::ReducePrimOpVarTypeInference);