# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.optimizer import Optimizer from paddle.fluid import framework, layers, unique_name from paddle.fluid.framework import Variable from paddle.fluid.layer_helper import LayerHelper import paddle from paddle.fluid.dygraph import base as imperative_base __all__ = [] class LookAhead(Optimizer): r""" This implements the Lookahead optimizer of the paper : https://arxiv.org/abs/1907.08610. Lookahead keeps two sets of params: the fast_params and the slow_params. inner_optimizer update fast_params every training step. Lookahead updates the slow_params and fast_params every k training steps as follows: .. math:: slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1}) fast\_param_t &= slow\_param_t Args: inner_optimizer (Optimizer): The optimizer that update fast params step by step. alpha (float, optinal): The learning rate of Lookahead. The default value is 0.5. k (int, optinal): The slow params is updated every k steps. The default value is 5. name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. The default value is None. Examples: .. code-block:: python import numpy as np import paddle import paddle.nn as nn BATCH_SIZE = 16 BATCH_NUM = 4 EPOCH_NUM = 4 IMAGE_SIZE = 784 CLASS_NUM = 10 # define a random dataset class RandomDataset(paddle.io.Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([IMAGE_SIZE]).astype('float32') label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM) self.bias = self._linear.bias @paddle.jit.to_static def forward(self, x): return self._linear(x) def train(layer, loader, loss_fn, opt): for epoch_id in range(EPOCH_NUM): for batch_id, (image, label) in enumerate(loader()): out = layer(image) loss = loss_fn(out, label) loss.backward() opt.step() opt.clear_grad() print("Train Epoch {} batch {}: loss = {}".format( epoch_id, batch_id, np.mean(loss.numpy()))) layer = LinearNet() loss_fn = nn.CrossEntropyLoss() optimizer = paddle.optimizer.SGD(learning_rate=0.1, parameters=layer.parameters()) lookahead = paddle.incubate.LookAhead(optimizer, alpha=0.2, k=5) # create data loader dataset = RandomDataset(BATCH_NUM * BATCH_SIZE) loader = paddle.io.DataLoader( dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True, num_workers=2) train(layer, loader, loss_fn, lookahead) """ _slow_str = "slow" def __init__(self, inner_optimizer, alpha=0.5, k=5, name=None): assert inner_optimizer is not None, "inner optimizer can not be None" assert ( 0.0 <= alpha <= 1.0 ), "alpha should be larger or equal to 0.0, and less or equal than 1.0" assert isinstance(k, int) and k > 0, "k should be a positive integer" self.inner_optimizer = inner_optimizer if self.inner_optimizer._parameter_list is None: parameters = ( framework.default_main_program().global_block().all_parameters() ) else: parameters = self.inner_optimizer._parameter_list super(LookAhead, self).__init__( learning_rate=alpha, parameters=parameters, weight_decay=None, grad_clip=None, name=name, ) self.alpha = alpha self.k = k self.type = "lookahead" self.helper = LayerHelper(self.__class__.__name__) self._global_step_var = None self._k_var = None @framework.dygraph_only @imperative_base.no_grad def step(self): """ Execute the optimizer and update parameters once. Returns: None Examples: .. code-block:: python import paddle import numpy as np inp = paddle.to_tensor(np.random.random([1, 10]).astype('float32')) linear = paddle.nn.Linear(10, 1) out = linear(inp) loss = paddle.mean(out) sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters()) lookahead = paddle.incubate.LookAhead(sgd, alpha=0.2, k=5) loss.backward() lookahead.step() lookahead.clear_grad() """ self.inner_optimizer.step() self._increment_global_var() params_grads = [] for param in self._parameter_list: if not param.trainable: continue if param._grad_ivar() is not None: grad_var = param._grad_ivar() params_grads.append((param, grad_var)) self._apply_optimize( loss=None, startup_program=None, params_grads=params_grads ) def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) for p in parameters: self._add_accumulator(self._slow_str, p) def _increment_global_var(self): if self._global_step_var is None: self._global_step_var = layers.create_global_var( name=unique_name.generate("lookahead_step"), shape=[1], value=0, dtype='int32', persistable=True, ) self.helper.append_op( type='increment', inputs={'X': [self._global_step_var]}, outputs={'Out': [self._global_step_var]}, attrs={'step': 1.0}, ) def _append_optimize_op(self, block, param_and_grad): one_var = paddle.ones(shape=[1], dtype='int32', name='lookahead_ones') zero_var = paddle.zeros( shape=[1], dtype='int32', name='lookahead_zeros' ) k_var = layers.create_global_var( name=unique_name.generate("lookahead_k"), shape=[1], value=self.k, dtype='int32', persistable=True, ) mod = paddle.remainder(self._global_step_var, k_var) cond_1 = paddle.equal(self._global_step_var, one_var) cond_1 = paddle.cast(cond_1, dtype='float32') cond_2 = paddle.equal(mod, zero_var) cond_2 = paddle.cast(cond_2, dtype='float32') slow_var = self._get_accumulator(self._slow_str, param_and_grad[0]) tmp_var = cond_1 * param_and_grad[0] + (1 - cond_1) * slow_var paddle.assign(tmp_var, slow_var) tmp_var = self.alpha * param_and_grad[0] + (1.0 - self.alpha) * slow_var tmp_var_1 = cond_2 * tmp_var + (1 - cond_2) * param_and_grad[0] paddle.assign(tmp_var_1, param_and_grad[0]) tmp_var_1 = cond_2 * tmp_var + (1 - cond_2) * slow_var paddle.assign(tmp_var_1, slow_var) @imperative_base.no_grad def minimize( self, loss, startup_program=None, parameters=None, no_grad_set=None ): """ Add operations to minimize ``loss`` by updating ``parameters``. Args: loss (Tensor): A ``Tensor`` containing the value to minimize. startup_program (Program, optional): :ref:`api_fluid_Program` for initializing parameters in ``parameters``. The default value is None, at this time :ref:`api_fluid_default_startup_program` will be used. parameters (list, optional): List of ``Tensor`` or ``Tensor.name`` to update to minimize ``loss``. The default value is None, at this time all parameters will be updated. no_grad_set (set, optional): Set of ``Tensor`` or ``Tensor.name`` that don't need to be updated. The default value is None. Returns: tuple: tuple (optimize_ops, params_grads), A list of operators appended by minimize and a list of (param, grad) tensor pairs, param is ``Parameter``, grad is the gradient value corresponding to the parameter. In static graph mode, the returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to indicate program pruning. If so, the program will be pruned by ``feed`` and ``fetch_list`` before run, see details in ``Executor``. Examples: .. code-block:: python import paddle import numpy as np inp = paddle.to_tensor(np.random.random([1, 10]).astype('float32')) linear = paddle.nn.Linear(10, 1) out = linear(inp) loss = paddle.mean(out) sgd = paddle.optimizer.SGD(learning_rate=0.1,parameters=linear.parameters()) lookahead = paddle.incubate.LookAhead(sgd, alpha=0.2, k=5) loss.backward() lookahead.minimize(loss) lookahead.clear_grad() """ assert isinstance(loss, Variable), "The loss should be an Tensor." # Apply inner optimizer to the main_program optimize_ops, params_grads = self.inner_optimizer.minimize( loss, startup_program=startup_program, parameters=parameters, no_grad_set=no_grad_set, ) self._increment_global_var() _ = self._apply_optimize( loss, startup_program=startup_program, params_grads=params_grads ) return optimize_ops, params_grads