# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import optimizer import layer import activation import parameters import trainer import event import data_type import topology import data_feeder import networks import evaluator from . import dataset from . import reader from . import plot import attr import pooling import inference import networks import py_paddle.swig_paddle as api import minibatch import plot __all__ = [ 'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer', 'event', 'data_type', 'attr', 'pooling', 'data_feeder', 'dataset', 'reader', 'topology', 'networks', 'infer', 'plot', 'evaluator' ] def init(**kwargs): args = [] args_dict = {} # NOTE: append arguments if they are in ENV for ek, ev in os.environ.iteritems(): if ek.startswith("PADDLE_INIT_"): args_dict[ek.replace("PADDLE_INIT_", "").lower()] = str(ev) args_dict.update(kwargs) # NOTE: overwrite arguments from ENV if it is in kwargs for key in args_dict.keys(): args.append('--%s=%s' % (key, str(kwargs[key]))) api.initPaddle(*args) infer = inference.infer batch = minibatch.batch