# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from numpy.random import random as rand import paddle.complex as cpx import paddle.fluid as fluid import paddle.fluid.dygraph as dg layers = { "add": cpx.elementwise_add, "sub": cpx.elementwise_sub, "mul": cpx.elementwise_mul, "div": cpx.elementwise_div, } class TestComplexElementwiseLayers(unittest.TestCase): def setUp(self): self._dtype = "float64" self._places = [fluid.CPUPlace()] if fluid.core.is_compiled_with_cuda(): self._places.append(fluid.CUDAPlace(0)) def calc(self, x, y, layer_type, place): with dg.guard(place): var_x = dg.to_variable(x) var_y = dg.to_variable(y) return layers[layer_type](var_x, var_y).numpy() def compare(self, x, y): for place in self._places: self.assertTrue(np.allclose(self.calc(x, y, "add", place), x + y)) self.assertTrue(np.allclose(self.calc(x, y, "sub", place), x - y)) self.assertTrue(np.allclose(self.calc(x, y, "mul", place), x * y)) self.assertTrue(np.allclose(self.calc(x, y, "div", place), x / y)) def test_complex_xy(self): x = rand([2, 3, 4, 5]).astype(self._dtype) + 1j * rand( [2, 3, 4, 5]).astype(self._dtype) y = rand([2, 3, 4, 5]).astype(self._dtype) + 1j * rand( [2, 3, 4, 5]).astype(self._dtype) self.compare(x, y) def test_complex_x_real_y(self): x = rand([2, 3, 4, 5]).astype(self._dtype) + 1j * rand( [2, 3, 4, 5]).astype(self._dtype) y = rand([4, 5]).astype(self._dtype) self.compare(x, y) def test_real_x_complex_y(self): x = rand([2, 3, 4, 5]).astype(self._dtype) y = rand([5]).astype(self._dtype) + 1j * rand([5]).astype(self._dtype) self.compare(x, y) if __name__ == '__main__': unittest.main()