# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid from paddle.fluid import core class TestReverseOp(OpTest): def initTestCase(self): self.x = np.random.random((3, 40)).astype('float64') self.axis = [0] def setUp(self): self.initTestCase() self.op_type = "reverse" self.python_api = fluid.layers.reverse self.inputs = {"X": self.x} self.attrs = {'axis': self.axis} out = self.x for a in self.axis: out = np.flip(out, axis=a) self.outputs = {'Out': out} def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad(['X'], 'Out', check_eager=True) class TestCase0(TestReverseOp): def initTestCase(self): self.x = np.random.random((3, 40)).astype('float64') self.axis = [1] class TestCase0_neg(TestReverseOp): def initTestCase(self): self.x = np.random.random((3, 40)).astype('float64') self.axis = [-1] class TestCase1(TestReverseOp): def initTestCase(self): self.x = np.random.random((3, 40)).astype('float64') self.axis = [0, 1] class TestCase1_neg(TestReverseOp): def initTestCase(self): self.x = np.random.random((3, 40)).astype('float64') self.axis = [0, -1] class TestCase2(TestReverseOp): def initTestCase(self): self.x = np.random.random((3, 4, 10)).astype('float64') self.axis = [0, 2] class TestCase2_neg(TestReverseOp): def initTestCase(self): self.x = np.random.random((3, 4, 10)).astype('float64') self.axis = [0, -2] class TestCase3(TestReverseOp): def initTestCase(self): self.x = np.random.random((3, 4, 10)).astype('float64') self.axis = [1, 2] class TestCase3_neg(TestReverseOp): def initTestCase(self): self.x = np.random.random((3, 4, 10)).astype('float64') self.axis = [-1, -2] class TestCase4(unittest.TestCase): def test_error(self): place = fluid.CPUPlace() exe = fluid.Executor(place) train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): label = fluid.layers.data(name="label", shape=[1, 1, 1, 1, 1, 1, 1, 1], dtype="int64") rev = fluid.layers.reverse(label, axis=[-1, -2]) def _run_program(): x = np.random.random(size=(10, 1, 1, 1, 1, 1, 1)).astype('int64') exe.run(train_program, feed={"label": x}) self.assertRaises(IndexError, _run_program) class TestReverseLoDTensorArray(unittest.TestCase): def setUp(self): self.shapes = [[5, 25], [5, 20], [5, 5]] self.place = fluid.CUDAPlace( 0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace() self.exe = fluid.Executor(self.place) def run_program(self, arr_len, axis=0): main_program = fluid.Program() with fluid.program_guard(main_program): inputs, inputs_data = [], [] for i in range(arr_len): x = fluid.data("x%s" % i, self.shapes[i], dtype='float32') x.stop_gradient = False inputs.append(x) inputs_data.append( np.random.random(self.shapes[i]).astype('float32')) tensor_array = fluid.layers.create_array(dtype='float32') for i in range(arr_len): idx = fluid.layers.array_length(tensor_array) fluid.layers.array_write(inputs[i], idx, tensor_array) reverse_array = fluid.layers.reverse(tensor_array, axis=axis) output, _ = fluid.layers.tensor_array_to_tensor(reverse_array) loss = fluid.layers.reduce_sum(output) fluid.backward.append_backward(loss) input_grads = list( map(main_program.global_block().var, [x.name + "@GRAD" for x in inputs])) feed_dict = dict(zip([x.name for x in inputs], inputs_data)) res = self.exe.run(main_program, feed=feed_dict, fetch_list=input_grads + [output.name]) return np.hstack(inputs_data[::-1]), res def test_case1(self): gt, res = self.run_program(arr_len=3) self.check_output(gt, res) # test with tuple type of axis gt, res = self.run_program(arr_len=3, axis=(0, )) self.check_output(gt, res) def test_case2(self): gt, res = self.run_program(arr_len=1) self.check_output(gt, res) # test with list type of axis gt, res = self.run_program(arr_len=1, axis=[0]) self.check_output(gt, res) def check_output(self, gt, res): arr_len = len(res) - 1 reversed_array = res[-1] # check output np.testing.assert_array_equal(gt, reversed_array) # check grad for i in range(arr_len): np.testing.assert_array_equal(res[i], np.ones_like(res[i])) def test_raise_error(self): # The len(axis) should be 1 is input(X) is LoDTensorArray with self.assertRaises(Exception): self.run_program(arr_len=3, axis=[0, 1]) # The value of axis should be 0 is input(X) is LoDTensorArray with self.assertRaises(Exception): self.run_program(arr_len=3, axis=1) if __name__ == '__main__': paddle.enable_static() unittest.main()