// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/stack_grad_kernel.h" #include "paddle/fluid/memory/memory.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template __global__ void UnStackHelperCUDAKernel(const T* __restrict__ input, int pre_dim_size, int split_dim_size, int suf_dim_size, int num_split, T** output_ptrs) { assert(blockDim.y == 1); assert(blockDim.z == 1); // In this case they are equal assert(split_dim_size % num_split == 0); IntType size = pre_dim_size * split_dim_size * suf_dim_size; IntType each_dim_size = split_dim_size / num_split; for (IntType offset = blockIdx.x * blockDim.x + threadIdx.x; offset < size; offset += blockDim.x * gridDim.x) { IntType i = offset / (split_dim_size * suf_dim_size); IntType j = (offset % (split_dim_size * suf_dim_size)) / suf_dim_size; IntType k = offset % suf_dim_size; T* output = output_ptrs[j / each_dim_size]; if (output == nullptr) { return; } IntType output_ind = i * each_dim_size * suf_dim_size + (j % each_dim_size) * suf_dim_size + k; *(output + output_ind) = input[offset]; } } template void StackGradKernel(const Context& dev_ctx, const DenseTensor& out, int axis, std::vector x_grad) { if (axis < 0) axis += out.dims().size(); int n = out.dims()[axis]; PADDLE_ENFORCE_EQ(n, x_grad.size(), phi::errors::InvalidArgument( "Output x_grad size should be equal to n, but" " received n is:%d x_grad size is:%d.", n, x_grad.size())); // x_grad is output, so save each data address, then copy each dy into dx_data std::vector outputs(n); for (size_t j = 0; j < x_grad.size(); ++j) { if (x_grad[j] == nullptr) { outputs[j] = nullptr; continue; } if (x_grad[j]->numel() != 0UL) { T* ptr = dev_ctx.template Alloc(x_grad[j]); outputs[j] = ptr; } else { outputs[j] = nullptr; } } auto dy_data = out.data(); // each x_grad should have same shape int dy_pre = 1, dy_suf = 1; auto dy_dims = out.dims(); int split_dim = n; for (int i = 0; i < axis; ++i) { dy_pre *= dy_dims[i]; } dy_suf = out.numel() / (split_dim * dy_pre); auto tmp_out_data = paddle::memory::Alloc(dev_ctx, outputs.size() * sizeof(T*)); paddle::memory::Copy(dev_ctx.GetPlace(), tmp_out_data->ptr(), phi::CPUPlace(), reinterpret_cast(outputs.data()), outputs.size() * sizeof(T*), dev_ctx.stream()); auto config = phi::backends::gpu::GetGpuLaunchConfig1D( dev_ctx, dy_pre * split_dim * dy_suf); if (out.numel() < std::numeric_limits::max()) { UnStackHelperCUDAKernel <<>>(dy_data, dy_pre, split_dim, dy_suf, split_dim, reinterpret_cast(tmp_out_data->ptr())); } else { UnStackHelperCUDAKernel <<>>(dy_data, dy_pre, split_dim, dy_suf, split_dim, reinterpret_cast(tmp_out_data->ptr())); } } } // namespace phi PD_REGISTER_KERNEL(stack_grad, GPU, ALL_LAYOUT, phi::StackGradKernel, float, double, int64_t, int, phi::dtype::float16, phi::dtype::bfloat16) {}