# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core from paddle.fluid.op import Operator import paddle.fluid.layers as layers import paddle.fluid as fluid import random import six def create_tdm_tree(): """Create tdm tree info""" tree_info = [ [0, 0, 0, 1, 2], [0, 1, 0, 3, 4], [0, 1, 0, 5, 6], [0, 2, 1, 7, 8], [0, 2, 1, 9, 10], [0, 2, 2, 11, 12], [0, 2, 2, 13, 0], [0, 3, 3, 14, 15], [0, 3, 3, 16, 17], [0, 3, 4, 18, 19], [0, 3, 4, 20, 21], [0, 3, 5, 22, 23], [0, 3, 5, 24, 25], [12, 3, 6, 0, 0], [0, 4, 7, 0, 0], [1, 4, 7, 0, 0], [2, 4, 8, 0, 0], [3, 4, 8, 0, 0], [4, 4, 9, 0, 0], [5, 4, 9, 0, 0], [6, 4, 10, 0, 0], [7, 4, 10, 0, 0], [8, 4, 11, 0, 0], [9, 4, 11, 0, 0], [10, 4, 12, 0, 0], [11, 4, 12, 0, 0], ] return tree_info class TestTDMChildOp(OpTest): def setUp(self): self.__class__.op_type = "tdm_child" self.config() tree_info = create_tdm_tree() tree_info_np = np.array(tree_info).astype(self.info_type) x_np = np.random.randint( low=0, high=26, size=self.x_shape).astype(self.x_type) children_res = [] leaf_mask_res = [] for batch in x_np: for node in batch: children = [] if node != 0: children.append(tree_info[node][3]) children.append(tree_info[node][4]) else: children.append(0) children.append(0) mask = [] for child in children: m = int(tree_info[child][0] != 0) mask.append(m) children_res += children leaf_mask_res += mask children_res_np = np.array(children_res).astype(self.info_type) leaf_mask_res_np = np.array(leaf_mask_res).astype(self.info_type) child = np.reshape(children_res_np, self.child_shape) leaf_mask = np.reshape(leaf_mask_res_np, self.child_shape) self.attrs = {'child_nums': 2} self.inputs = {'X': x_np, 'TreeInfo': tree_info_np} self.outputs = {'Child': child, 'LeafMask': leaf_mask} def config(self): """set test shape & type""" self.x_shape = (10, 20) self.child_shape = (10, 20, 2) self.x_type = 'int32' self.info_type = 'int32' def test_check_output(self): self.check_output() class TestCase1(TestTDMChildOp): def config(self): """check int int64_t """ self.x_shape = (10, 20) self.child_shape = (10, 20, 2) self.x_type = 'int32' self.info_type = 'int64' class TestCase2(TestTDMChildOp): def config(self): """check int64_t int64_t """ self.x_shape = (10, 20) self.child_shape = (10, 20, 2) self.x_type = 'int64' self.info_type = 'int64' class TestCase3(TestTDMChildOp): def config(self): """check int64 int32 """ self.x_shape = (10, 20) self.child_shape = (10, 20, 2) self.x_type = 'int64' self.info_type = 'int32' class TestCase4(TestTDMChildOp): def config(self): """check large shape """ self.x_shape = (100, 20) self.child_shape = (100, 20, 2) self.x_type = 'int32' self.info_type = 'int32' class TestTDMChildShape(unittest.TestCase): def test_shape(self): x = fluid.layers.data(name='x', shape=[1], dtype='int32', lod_level=1) tdm_tree_info = create_tdm_tree() tree_info_np = np.array(tdm_tree_info).astype('int32') child, leaf_mask = fluid.contrib.layers.tdm_child( x=x, node_nums=26, child_nums=2, param_attr=fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( tree_info_np))) place = fluid.CPUPlace() exe = fluid.Executor(place=place) exe.run(fluid.default_startup_program()) feed = { 'x': np.array([[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]]).astype('int32') } exe.run(feed=feed) if __name__ == "__main__": unittest.main()