# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import unittest import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core from paddle.fluid.executor import Executor from paddle.fluid.backward import append_backward from paddle.fluid.layers.control_flow import ConditionalBlock class ConditionalBlockTest(unittest.TestCase): def test_forward(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): data = layers.data(name='X', shape=[1], dtype='float32') data.stop_gradient = False cond = ConditionalBlock(inputs=[data]) out = layers.create_tensor(dtype='float32') with cond.block(): hidden = layers.fc(input=data, size=10) layers.assign(hidden, out) cpu = core.CPUPlace() exe = Executor(cpu) exe.run(startup_program) x = np.random.random(size=(10, 1)).astype('float32') outs = exe.run(main_program, feed={'X': x}, fetch_list=[out])[0] print(outs) loss = layers.mean(out) append_backward(loss=loss) outs = exe.run( main_program, feed={'X': x}, fetch_list=[main_program.block(0).var(data.name + "@GRAD")])[0] print(outs) class TestConditionalBlockOpInferShape(unittest.TestCase): def test_infer_shape(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): global_block = main_program.global_block() sub_block = main_program._create_block() main_program._rollback() step_scope = global_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) cond_var = layers.fill_constant( shape=[1], dtype='bool', value=False) op = global_block.append_op( type='conditional_block', inputs={ 'Cond': [cond_var], 'Input': [], }, outputs={'Out': [], 'Scope': [step_scope]}, attrs={'sub_block': sub_block, 'is_scalar_condition': True}) op.desc.infer_shape(global_block.desc) if __name__ == '__main__': unittest.main()