# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import unittest import paddle.fluid as fluid import paddle.static.amp as amp from paddle.fluid import core import paddle paddle.enable_static() class AMPTest(unittest.TestCase): def setUp(self): self.bf16_list = copy.copy(amp.bf16.amp_lists.bf16_list) self.fp32_list = copy.copy(amp.bf16.amp_lists.fp32_list) self.gray_list = copy.copy(amp.bf16.amp_lists.gray_list) self.amp_lists_ = None def tearDown(self): self.assertEqual(self.amp_lists_.bf16_list, self.bf16_list) self.assertEqual(self.amp_lists_.fp32_list, self.fp32_list) self.assertEqual(self.amp_lists_.gray_list, self.gray_list) def test_amp_lists(self): self.amp_lists_ = amp.bf16.AutoMixedPrecisionListsBF16() def test_amp_lists_1(self): # 1. w={'exp}, b=None self.bf16_list.add('exp') self.fp32_list.remove('exp') self.amp_lists_ = amp.bf16.AutoMixedPrecisionListsBF16({'exp'}) def test_amp_lists_2(self): # 2. w={'tanh'}, b=None self.fp32_list.remove('tanh') self.bf16_list.add('tanh') self.amp_lists_ = amp.bf16.AutoMixedPrecisionListsBF16({'tanh'}) def test_amp_lists_3(self): # 3. w={'lstm'}, b=None self.bf16_list.add('lstm') self.amp_lists_ = amp.bf16.AutoMixedPrecisionListsBF16({'lstm'}) def test_amp_lists_4(self): # 4. w=None, b={'matmul_v2'} self.bf16_list.remove('matmul_v2') self.fp32_list.add('matmul_v2') self.amp_lists_ = amp.bf16.AutoMixedPrecisionListsBF16( custom_fp32_list={'matmul_v2'}) def test_amp_lists_5(self): # 5. w=None, b={'matmul_v2'} self.fp32_list.add('matmul_v2') self.bf16_list.remove('matmul_v2') self.amp_lists_ = amp.bf16.AutoMixedPrecisionListsBF16( custom_fp32_list={'matmul_v2'}) def test_amp_lists_6(self): # 6. w=None, b={'lstm'} self.fp32_list.add('lstm') self.amp_lists_ = amp.bf16.AutoMixedPrecisionListsBF16( custom_fp32_list={'lstm'}) def test_amp_lists_7(self): self.fp32_list.add('reshape2') self.gray_list.remove('reshape2') self.amp_lists_ = amp.bf16.AutoMixedPrecisionListsBF16( custom_fp32_list={'reshape2'}) def test_amp_list_8(self): self.bf16_list.add('reshape2') self.gray_list.remove('reshape2') self.amp_lists_ = amp.bf16.AutoMixedPrecisionListsBF16( custom_bf16_list={'reshape2'}) class AMPTest2(unittest.TestCase): def test_amp_lists_(self): # 7. w={'lstm'} b={'lstm'} # raise ValueError self.assertRaises(ValueError, amp.bf16.AutoMixedPrecisionListsBF16, {'lstm'}, {'lstm'}) def test_find_op_index(self): block = fluid.default_main_program().global_block() op_desc = core.OpDesc() idx = amp.bf16.amp_utils.find_op_index(block.desc, op_desc) assert (idx == -1) def test_is_in_fp32_varnames(self): block = fluid.default_main_program().global_block() var1 = block.create_var(name="X", shape=[3], dtype='float32') var2 = block.create_var(name="Y", shape=[3], dtype='float32') var3 = block.create_var(name="Z", shape=[3], dtype='float32') op1 = block.append_op( type="abs", inputs={"X": [var1]}, outputs={"Out": [var2]}) op2 = block.append_op( type="abs", inputs={"X": [var2]}, outputs={"Out": [var3]}) amp_lists_1 = amp.bf16.AutoMixedPrecisionListsBF16( custom_fp32_varnames={'X'}) assert amp.bf16.amp_utils._is_in_fp32_varnames(op1, amp_lists_1) amp_lists_2 = amp.bf16.AutoMixedPrecisionListsBF16( custom_fp32_varnames={'Y'}) assert amp.bf16.amp_utils._is_in_fp32_varnames(op2, amp_lists_2) assert amp.bf16.amp_utils._is_in_fp32_varnames(op1, amp_lists_2) def test_find_true_post_op(self): block = fluid.default_main_program().global_block() var1 = block.create_var(name="X", shape=[3], dtype='float32') var2 = block.create_var(name="Y", shape=[3], dtype='float32') var3 = block.create_var(name="Z", shape=[3], dtype='float32') op1 = block.append_op( type="abs", inputs={"X": [var1]}, outputs={"Out": [var2]}) op2 = block.append_op( type="abs", inputs={"X": [var2]}, outputs={"Out": [var3]}) res = amp.bf16.amp_utils.find_true_post_op(block.ops, op1, "Y") assert (res == [op2]) def test_find_true_post_op_with_search_all(self): program = fluid.Program() block = program.current_block() startup_block = fluid.default_startup_program().global_block() var1 = block.create_var(name="X", shape=[3], dtype='float32') var2 = block.create_var(name="Y", shape=[3], dtype='float32') inititializer_op = startup_block._prepend_op( type="fill_constant", outputs={"Out": var1}, attrs={"shape": var1.shape, "dtype": var1.dtype, "value": 1.0}) op1 = block.append_op( type="abs", inputs={"X": [var1]}, outputs={"Out": [var2]}) result = amp.bf16.amp_utils.find_true_post_op( block.ops, inititializer_op, "X", search_all=False) assert (len(result) == 0) result = amp.bf16.amp_utils.find_true_post_op( block.ops, inititializer_op, "X", search_all=True) assert (result == [op1]) if __name__ == '__main__': unittest.main()