# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.distribution import constraint class Variable(object): """Random variable of probability distribution. Args: is_discrete (bool): Is the variable discrete or continuous. event_rank (int): The rank of event dimensions. """ def __init__(self, is_discrete=False, event_rank=0, constraint=None): self._is_discrete = is_discrete self._event_rank = event_rank self._constraint = constraint @property def is_discrete(self): return self._is_discrete @property def event_rank(self): return self._event_rank def constraint(self, value): """Check whether the 'value' meet the constraint conditions of this random variable.""" return self._constraint(value) class Real(Variable): def __init__(self, event_rank=0): super(Real, self).__init__(False, event_rank, constraint.real) class Positive(Variable): def __init__(self, event_rank=0): super(Positive, self).__init__(False, event_rank, constraint.positive) class Independent(Variable): """Reinterprets some of the batch axes of variable as event axes. Args: base (Variable): Base variable. reinterpreted_batch_rank (int): The rightmost batch rank to be reinterpreted. """ def __init__(self, base, reinterpreted_batch_rank): self._base = base self._reinterpreted_batch_rank = reinterpreted_batch_rank super(Independent, self).__init__( base.is_discrete, base.event_rank + reinterpreted_batch_rank) def constraint(self, value): ret = self._base.constraint(value) if ret.dim() < self._reinterpreted_batch_rank: raise ValueError( "Input dimensions must be equal or grater than {}".format( self._reinterpreted_batch_rank)) return ret.reshape(ret.shape[:ret.dim() - self.reinterpreted_batch_rank] + (-1, )).all(-1) class Stack(Variable): def __init__(self, vars, axis=0): self._vars = vars self._axis = axis @property def is_discrete(self): return any(var.is_discrete for var in self._vars) @property def event_rank(self): rank = max(var.event_rank for var in self._vars) if self._axis + rank < 0: rank += 1 return rank def constraint(self, value): if not (-value.dim() <= self._axis < value.dim()): raise ValueError( f'Input dimensions {value.dim()} should be grater than stack ' f'constraint axis {self._axis}.') return paddle.stack([ var.check(value) for var, value in zip(self._vars, paddle.unstack(value, self._axis)) ], self._axis) real = Real() positive = Positive()