# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from paddle import fluid, nn import paddle.fluid.dygraph as dg import paddle.fluid.initializer as I import paddle.nn.functional as F import unittest class RowConvTestCase(unittest.TestCase): def __init__(self, methodName='runTest', batch_size=4, num_channels=8, time_steps=12, context_size=3, act=None, dtype="float32"): super(RowConvTestCase, self).__init__(methodName=methodName) self.batch_size = batch_size self.num_channels = num_channels self.time_steps = time_steps self.context_size = context_size self.act = act self.dtype = dtype def setUp(self): input_shape = (self.batch_size, self.time_steps, self.num_channels) self.input = np.random.uniform(size=input_shape).astype(self.dtype) self.weight_shape = weight_shape = (self.context_size + 1, self.num_channels) self.weight = np.random.uniform(size=weight_shape).astype(self.dtype) def fluid_layer(self, place): main = fluid.Program() start = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, start): x = fluid.data( "input", [-1, -1, self.num_channels], dtype=self.dtype) y = fluid.layers.row_conv( x, self.context_size, param_attr=I.NumpyArrayInitializer(self.weight), act=self.act) exe = fluid.Executor(place) exe.run(start) y_np, = exe.run(main, feed={"input": self.input}, fetch_list=[y]) return y_np def functional_declarative(self, place): main = fluid.Program() start = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, start): x = fluid.data( "input", [-1, -1, self.num_channels], dtype=self.dtype) w = fluid.data("weight", self.weight_shape, dtype=self.dtype) y = F.row_conv(x, w, act=self.act) exe = fluid.Executor(place) exe.run(start) y_np, = exe.run(main, feed={"input": self.input, "weight": self.weight}, fetch_list=[y]) return y_np def functional_imperative(self, place): with dg.guard(place): x_var = dg.to_variable(self.input) w_var = dg.to_variable(self.weight) y_var = F.row_conv(x_var, w_var, act=self.act) y_np = y_var.numpy() return y_np def nn_layer(self, place): with dg.guard(place): x_var = dg.to_variable(self.input) conv = nn.RowConv( self.num_channels, self.context_size, param_attr=I.NumpyArrayInitializer(self.weight), act=self.act, dtype=self.dtype) y_var = conv(x_var) y_np = y_var.numpy() return y_np def _test_equivalence(self, place): result1 = self.fluid_layer(place) result2 = self.functional_declarative(place) result3 = self.functional_imperative(place) result4 = self.nn_layer(place) np.testing.assert_array_almost_equal(result1, result2) np.testing.assert_array_almost_equal(result2, result3) np.testing.assert_array_almost_equal(result3, result4) def runTest(self): place = fluid.CPUPlace() self._test_equivalence(place) if fluid.core.is_compiled_with_cuda(): palce = fluid.CUDAPlace(0) self._test_equivalence(place) def load_tests(loader, standard_tests, pattern): suite = unittest.TestSuite() suite.addTest(RowConvTestCase(methodName="runTest")) suite.addTest(RowConvTestCase(methodName="runTest", act="sigmoid")) suite.addTest( RowConvTestCase( methodName="runTest", context_size=5, act="sigmoid")) return suite if __name__ == "__main__": unittest.main()