# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core class Optimization_ex1(paddle.nn.Layer): def __init__(self, shape, param_attr=paddle.nn.initializer.Uniform( low=-5., high=5.), dtype='float32'): super(Optimization_ex1, self).__init__() self.theta = self.create_parameter( shape=shape, attr=param_attr, dtype=dtype, is_bias=False) self.A = paddle.to_tensor( np.random.randn(4, 4) + np.random.randn(4, 4) * 1j) def forward(self): loss = paddle.add(self.theta, self.A) return loss.real() class TestComplexSimpleNet(unittest.TestCase): def setUp(self): self.devices = ['cpu'] if core.is_compiled_with_cuda(): self.devices.append('gpu') self.iter = 10 self.learning_rate = 0.5 self.theta_size = [4, 4] def train(self, device): paddle.set_device(device) myLayer = Optimization_ex1(self.theta_size) optimizer = paddle.optimizer.Adam( learning_rate=self.learning_rate, parameters=myLayer.parameters()) for itr in range(self.iter): loss = myLayer() loss.backward() optimizer.step() optimizer.clear_grad() def test_train_success(self): for dev in self.devices: self.train(dev) if __name__ == '__main__': unittest.main()