// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include // NOLINT #include #include #include "boost/lexical_cast.hpp" #include "glog/logging.h" #include "paddle/fluid/distributed/common/utils.h" #include "paddle/fluid/framework/blocking_queue.h" #include "paddle/fluid/framework/dim.h" #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/string/split.h" constexpr int FG = 256 * 1024 * 1024; constexpr int Q_SIZE = 10000; constexpr int BUCKET = 10; constexpr char XEOF[] = "EOF"; using boost::lexical_cast; inline double GetCurrentUS() { struct timeval time; gettimeofday(&time, NULL); return 1e+6 * time.tv_sec + time.tv_usec; } namespace paddle { namespace distributed { class ShardingMerge { public: ShardingMerge() {} ~ShardingMerge() {} void Merge(const std::vector &inputs, const std::vector &feasigns, const std::string &output, const int embedding_dim) { pool_.reset(new ::ThreadPool(inputs.size())); std::vector> tasks(inputs.size()); std::vector> rows; rows.resize(inputs.size()); auto begin = GetCurrentUS(); for (int x = 0; x < inputs.size(); ++x) { tasks[x] = pool_->enqueue([this, x, &rows, &inputs, &feasigns]() -> int { DeserializeRowsFromFile(inputs[x], feasigns[x], &rows[x]); return 0; }); } for (size_t x = 0; x < tasks.size(); ++x) { tasks[x].wait(); } int64_t total_rows = 0; for (auto x = 0; x < rows.size(); x++) { total_rows += rows[x].size(); } auto end = GetCurrentUS(); VLOG(0) << "got " << total_rows << " feasigin ids from sparse embedding using " << end - begin; std::vector total_dims = {total_rows, static_cast(embedding_dim)}; std::vector> batch_buckets; batch_buckets.resize(inputs.size()); for (int x = 0; x < rows.size(); ++x) { batch_buckets[x] = bucket(rows[x].size(), BUCKET); } std::ofstream out(output, std::ios::binary); begin = GetCurrentUS(); SerializeRowsToStream(out, rows, batch_buckets, total_rows); end = GetCurrentUS(); VLOG(0) << "write rows to oostrream using " << end - begin; begin = GetCurrentUS(); SerializePreTensorToStream(out, total_dims); end = GetCurrentUS(); VLOG(0) << "write pretensor to oostrream using " << end - begin; begin = GetCurrentUS(); SerializeValueToStream(out, inputs, batch_buckets, embedding_dim); end = GetCurrentUS(); VLOG(0) << "write values to oostrream using " << end - begin; } private: void SerializeRowsToStream(std::ostream &os, const std::vector> &rows, const std::vector> &batch_buckets, int64_t total_rows) { { // the 1st field, uint32_t version constexpr uint32_t version = 0; os.write(reinterpret_cast(&version), sizeof(version)); } { // the 2st field, rows information os.write(reinterpret_cast(&total_rows), sizeof(total_rows)); for (int b = 0; b < BUCKET; ++b) { for (int x = 0; x < batch_buckets.size(); ++x) { auto begin = batch_buckets[x][b]; auto end = batch_buckets[x][b + 1]; if (end - begin == 0) continue; os.write(reinterpret_cast(rows[x].data() + begin), sizeof(int64_t) * (end - begin)); } } // the 3st field, the height of SelectedRows int64_t height = total_rows; os.write(reinterpret_cast(&height), sizeof(height)); } } void SerializePreTensorToStream(std::ostream &os, const std::vector &dims) { { // the 1st field, uint32_t version constexpr uint32_t version = 0; os.write(reinterpret_cast(&version), sizeof(version)); } { // the 2nd field, tensor description // int32_t size framework::proto::VarType::TensorDesc desc; desc.set_data_type(framework::proto::VarType::FP32); auto *pb_dims = desc.mutable_dims(); pb_dims->Resize(static_cast(dims.size()), 0); std::copy(dims.begin(), dims.end(), pb_dims->begin()); int32_t size = desc.ByteSize(); os.write(reinterpret_cast(&size), sizeof(size)); auto out = desc.SerializeAsString(); os.write(out.data(), size); } } void SerializeValueToVec(std::ifstream &in, const int batch, const int embedding_dim, std::vector *out) { auto queue = std::make_shared>>(); auto read = [batch, &in, &queue]() { std::string line; std::vector columns; std::vector values_str; int count = 0; while (std::getline(in, line)) { ++count; columns = string::Split(line, '\t'); if (columns.size() != 5) { VLOG(0) << "unexpected line: " << line << ", skip it"; continue; } values_str = string::Split(columns[4], ','); queue->Push(values_str); if (count >= batch) { break; } } queue->Push({}); }; auto write = [embedding_dim, &out, &queue]() { std::vector values_str; std::string line; while (true) { queue->Pop(&values_str); if (values_str.size() == 0) { break; } for (int x = 0; x < embedding_dim; ++x) { float v = 0.0; try { v = lexical_cast(values_str[x]); } catch (boost::bad_lexical_cast &e) { VLOG(0) << " get unexpected line: " << line; } out->push_back(v); } } }; std::thread p_read(read); std::thread p_write(write); p_read.join(); p_write.join(); } void SerializeVecToStream(std::ostream &out, const std::vector &value) { out.write(reinterpret_cast(value.data()), static_cast(sizeof(float) * value.size())); } void SerializeValueToStream( std::ostream &out, const std::vector &ins, const std::vector> &batch_buckets, const int embedding_dim) { std::vector> in_streams; for (int x = 0; x < ins.size(); ++x) { in_streams.emplace_back(std::make_shared(ins[x])); } std::vector> tasks(ins.size()); for (int b = 0; b < BUCKET; ++b) { std::vector> values; values.resize(tasks.size()); auto begin = GetCurrentUS(); for (int x = 0; x < tasks.size(); ++x) { auto batch = batch_buckets[x][b + 1] - batch_buckets[x][b]; values[x].clear(); values[x].reserve(batch * embedding_dim); } for (int x = 0; x < tasks.size(); ++x) { tasks[x] = pool_->enqueue([this, b, x, &out, &in_streams, &batch_buckets, &values, embedding_dim]() -> int { auto batch = batch_buckets[x][b + 1] - batch_buckets[x][b]; if (batch == 0) return 0; SerializeValueToVec(*(in_streams[x].get()), batch, embedding_dim, &values[x]); return 0; }); } for (size_t x = 0; x < tasks.size(); ++x) { tasks[x].wait(); } auto end = GetCurrentUS(); auto begin1 = GetCurrentUS(); for (size_t x = 0; x < tasks.size(); ++x) { SerializeVecToStream(out, values[x]); } auto end1 = GetCurrentUS(); VLOG(0) << "serialize buckets " << b << " read using " << end - begin << ", to oostream using " << end1 - begin1; } } void DeserializeRowsFromFile(const std::string &input_file, const int64_t feasigns, std::vector *rows) { std::string line; std::vector columns; std::ifstream file(input_file); rows->reserve(feasigns); while (std::getline(file, line)) { columns = string::Split(line, '\t'); if (columns.size() != 5) { VLOG(0) << "unexpected line: " << line << ", skip it"; continue; } rows->push_back(std::stoull(columns[0])); } VLOG(0) << "parse " << rows->size() << " embedding rows from " << input_file; } private: std::unique_ptr<::ThreadPool> pool_; }; } // namespace distributed } // namespace paddle