/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/selected_rows.h" #include "paddle/platform/device_context.h" #define INLINE_FOR2(sizei, sizej) \ for (int64_t i = 0; i < sizei; i++) \ for (int64_t j = 0; j < sizej; j++) namespace paddle { namespace operators { namespace math { // SelectedRows + SelectedRows will simplely concat value and rows. // The real computation happens in dealing with LoDTensor. template struct SelectedRowsAdd { void operator()(const DeviceContext& context, const framework::SelectedRows& input1, const framework::SelectedRows& input2, framework::SelectedRows* output); }; template struct SelectedRowsAddTensor { void operator()(const DeviceContext& context, const framework::SelectedRows& input1, const framework::Tensor& input2, framework::Tensor* output); }; // input2 = input1 + input2 template struct SelectedRowsAddTo { void operator()(const DeviceContext& context, const framework::SelectedRows& input1, const int64_t input2_offset, framework::SelectedRows* input2); }; // input2 = input1 + input2 template struct SelectedRowsAddToTensor { void operator()(const DeviceContext& context, const framework::SelectedRows& input1, framework::Tensor* input2); }; namespace scatter { // functors for manuplating SelectedRows data template struct MergeAdd { // unary functor, merge by adding duplicated rows in // the input SelectedRows object. framework::SelectedRows operator()(const DeviceContext& context, const framework::SelectedRows& input); }; template struct Add { framework::SelectedRows operator()(const DeviceContext& context, const framework::SelectedRows& input1, const framework::SelectedRows& input2) { framework::SelectedRows out; out.set_rows(input1.rows()); out.set_height(input1.height()); out.mutable_value()->mutable_data(input1.value().dims(), context.GetPlace()); auto e_out = framework::EigenVector::Flatten(*(out.mutable_value())); auto e_in1 = framework::EigenVector::Flatten(input1.value()); auto e_in2 = framework::EigenVector::Flatten(input2.value()); e_out.device(*context.eigen_device()) = e_in1 + e_in2; return out; } }; template struct Mul { // multiply two SelectedRows framework::SelectedRows operator()(const DeviceContext& context, const framework::SelectedRows& input1, const framework::SelectedRows& input2) { framework::SelectedRows out; out.set_rows(input1.rows()); out.set_height(input1.height()); out.mutable_value()->mutable_data(input1.value().dims(), context.GetPlace()); auto e_out = framework::EigenVector::Flatten(*(out.mutable_value())); auto e_in1 = framework::EigenVector::Flatten(input1.value()); auto e_in2 = framework::EigenVector::Flatten(input2.value()); e_out.device(*context.eigen_device()) = e_in1 * e_in2; return out; } // multiply scalar to SelectedRows framework::SelectedRows operator()(const DeviceContext& context, const framework::SelectedRows& input1, const T input2) { framework::SelectedRows out; out.set_rows(input1.rows()); out.set_height(input1.height()); out.mutable_value()->mutable_data(input1.value().dims(), context.GetPlace()); auto e_out = framework::EigenVector::Flatten(*(out.mutable_value())); auto e_in1 = framework::EigenVector::Flatten(input1.value()); e_out.device(*context.eigen_device()) = input2 * e_in1; return out; } }; enum class ScatterOps { ASSIGN, ADD, SUB, SUBBY, MUL, DIV, DIVBY }; // out = seleted_rows_in / tensor template struct UpdateToTensor { void operator()(const DeviceContext& context, const ScatterOps& op, const framework::SelectedRows& input1, framework::Tensor* input2); }; } // namespace scatter } // namespace math } // namespace operators } // namespace paddle