// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/clip_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void ClipGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& out_grad, const Scalar& min, const Scalar& max, DenseTensor* x_grad) { ctx.template Alloc(x_grad); using XPUDataType = typename XPUTypeTrait::Type; int r = xpu::clip_grad(ctx.x_context(), reinterpret_cast(x.data()), reinterpret_cast(out_grad.data()), reinterpret_cast(x_grad->data()), x.numel(), min.to(), max.to()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "clip_grad"); } } // namespace phi PD_REGISTER_KERNEL( clip_grad, XPU, ALL_LAYOUT, phi::ClipGradKernel, float, int) {}