# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle from paddle.static import InputSpec import paddle.vision.models as models class TestVisonModels(unittest.TestCase): def models_infer(self, arch, pretrained=False, batch_norm=False): x = np.array(np.random.random((2, 3, 224, 224)), dtype=np.float32) if batch_norm: net = models.__dict__[arch](pretrained=pretrained, batch_norm=True) else: net = models.__dict__[arch](pretrained=pretrained) input = InputSpec([None, 3, 224, 224], 'float32', 'image') model = paddle.Model(net, input) model.prepare() model.predict_batch(x) def test_mobilenetv2_pretrained(self): self.models_infer('mobilenet_v2', pretrained=False) def test_mobilenetv1(self): self.models_infer('mobilenet_v1') def test_vgg11(self): self.models_infer('vgg11') def test_vgg13(self): self.models_infer('vgg13') def test_vgg16(self): self.models_infer('vgg16') def test_vgg16_bn(self): self.models_infer('vgg16', batch_norm=True) def test_vgg19(self): self.models_infer('vgg19') def test_resnet18(self): self.models_infer('resnet18') def test_resnet34(self): self.models_infer('resnet34') def test_resnet50(self): self.models_infer('resnet50') def test_resnet101(self): self.models_infer('resnet101') def test_resnet152(self): self.models_infer('resnet152') def test_vgg16_num_classes(self): vgg16 = models.__dict__['vgg16'](pretrained=False, num_classes=10) def test_lenet(self): input = InputSpec([None, 1, 28, 28], 'float32', 'x') lenet = paddle.Model(models.__dict__['LeNet'](), input) lenet.prepare() x = np.array(np.random.random((2, 1, 28, 28)), dtype=np.float32) lenet.predict_batch(x) if __name__ == '__main__': unittest.main()