// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/lite/core/kernel.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/operators/jit/kernels.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { template class UniformRandomCompute : public KernelLite { public: void Run() override { auto &context = ctx_->As(); auto ¶m = *param_.get_mutable(); CHECK(context.x86_device_context()); auto *param_out = ¶m.Out->raw_tensor(); T *data = param_out->mutable_data(context.x86_device_context()->GetPlace()); unsigned int seed = static_cast(param.seed); std::minstd_rand engine; if (seed == 0) { seed = std::random_device()(); } engine.seed(seed); std::uniform_real_distribution dist(static_cast(param.min), static_cast(param.max)); int64_t size = param_out->numel(); for (int64_t i = 0; i < size; ++i) { data[i] = dist(engine); } } virtual ~UniformRandomCompute() = default; }; } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle // float REGISTER_LITE_KERNEL(uniform_random, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::UniformRandomCompute, def) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize();