// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/matmul_v2_op.h" #include #include namespace paddle { namespace operators { class MatMulV2Op : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2"); OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2"); bool trans_x = ctx->Attrs().Get("trans_x"); bool trans_y = ctx->Attrs().Get("trans_y"); std::vector dims_x = paddle::framework::vectorize(ctx->GetInputDim("X")); std::vector dims_y = paddle::framework::vectorize(ctx->GetInputDim("Y")); auto ndims_x = dims_x.size(); auto ndims_y = dims_y.size(); bool x_broadcasted = false, y_broadcasted = false; if (ndims_x == 1) { dims_x.insert(dims_x.begin(), 1); ndims_x = 2; x_broadcasted = true; } if (ndims_y == 1) { dims_y.push_back(1); ndims_y = 2; y_broadcasted = true; } size_t M, N; if (trans_x) { M = dims_x[ndims_x - 1]; } else { M = dims_x[ndims_x - 2]; } if (trans_y) { N = dims_y[ndims_y - 2]; } else { N = dims_y[ndims_y - 1]; } std::vector new_dims; if (ndims_x >= ndims_y) { new_dims.assign(dims_x.begin(), dims_x.end() - 2); } else { new_dims.assign(dims_y.begin(), dims_y.end() - 2); } if (!x_broadcasted) { new_dims.push_back(M); } if (!y_broadcasted) { new_dims.push_back(N); } if (x_broadcasted && y_broadcasted) { new_dims.push_back(1); } auto out_dims = framework::make_ddim(new_dims); ctx->SetOutputDim("Out", out_dims); ctx->ShareLoD("X", /* --> */ "Out"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context()); } }; class MatMulV2OpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "tensor of shape (d0, d1 ... M, K)"); AddInput("Y", "tensor of shape (d0, d1 ... K, N)"); AddOutput("Out", "tensor of shape (d0, d1 ... M, N)"); AddAttr("trans_x", "Set true to transpose the last two dimensions of X before " "doing multiplication") .SetDefault(false); AddAttr("trans_y", "Set true to transpose the last two dimensions of Y before " "doing multiplication") .SetDefault(false); AddComment( R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K), B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)). In addition, it also follows the broadcast rule which is similar as numpy.matmul. )DOC"); } }; class MatMulV2OpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: void InferShape(framework::InferShapeContext* context) const override { OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul_v2"); OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul_v2"); OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input", "Out@GRAD", "matmul_v2"); auto x_dims = context->GetInputDim("X"); auto y_dims = context->GetInputDim("Y"); auto x_grad_name = framework::GradVarName("X"); auto y_grad_name = framework::GradVarName("Y"); if (context->HasOutput(x_grad_name)) { context->SetOutputDim(x_grad_name, x_dims); } if (context->HasOutput(y_grad_name)) { context->SetOutputDim(y_grad_name, y_dims); } } }; template class MatMulV2GradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("matmul_v2_grad"); op->SetInput("X", this->Input("X")); op->SetInput("Y", this->Input("Y")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y")); op->SetAttrMap(this->Attrs()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(matmul_v2, ops::MatMulV2Op, ops::MatMulV2OpMaker, ops::MatMulV2GradOpMaker, ops::MatMulV2GradOpMaker); REGISTER_OPERATOR(matmul_v2_grad, ops::MatMulV2OpGrad); REGISTER_OP_CPU_KERNEL( matmul_v2, ops::MatMulV2Kernel, ops::MatMulV2Kernel, ops::MatMulV2Kernel, ops::MatMulV2Kernel); REGISTER_OP_CPU_KERNEL( matmul_v2_grad, ops::MatMulV2GradKernel, ops::MatMulV2GradKernel, ops::MatMulV2GradKernel, ops::MatMulV2GradKernel);