# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle import paddle.fluid as fluid import numpy as np import unittest class CrossEntropyLoss(unittest.TestCase): def test_cross_entropy_loss_mean(self): input_np = np.random.random([5, 100]).astype(np.float32) label_np = np.random.random([5, 1]).astype(np.int64) weight_np = np.random.random([100]).astype(np.float32) prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.layers.data( name='input', shape=[5, 100], dtype='float32') label = fluid.layers.data(name='label', shape=[5, 1], dtype='int64') weight = fluid.layers.data( name='weight', shape=[100], dtype='float32') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(weight=weight) ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np)) dy_ret = cross_entropy_loss( fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) self.assertTrue(np.allclose(static_ret, dy_ret_value)) def test_cross_entropy_loss_sum(self): input_np = np.random.random([5, 100]).astype(np.float32) label_np = np.random.random([5, 1]).astype(np.int64) weight_np = np.random.random([100]).astype(np.float32) prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.layers.data( name='input', shape=[5, 100], dtype='float32') label = fluid.layers.data(name='label', shape=[5, 1], dtype='int64') weight = fluid.layers.data( name='weight', shape=[100], dtype='float32') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction='sum') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), reduction='sum') dy_ret = cross_entropy_loss( fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) self.assertTrue(np.allclose(static_ret, dy_ret_value)) def test_cross_entropy_loss_none(self): input_np = np.random.random([5, 100]).astype(np.float32) label_np = np.random.random([5, 1]).astype(np.int64) weight_np = np.random.random([100]).astype(np.float32) prog = fluid.Program() startup_prog = fluid.Program() place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() with fluid.program_guard(prog, startup_prog): input = fluid.layers.data( name='input', shape=[5, 100], dtype='float32') label = fluid.layers.data(name='label', shape=[5, 1], dtype='int64') weight = fluid.layers.data( name='weight', shape=[100], dtype='float32') cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=weight, reduction='none') ret = cross_entropy_loss(input, label) exe = fluid.Executor(place) static_ret = exe.run(prog, feed={ 'input': input_np, 'label': label_np, "weight": weight_np }, fetch_list=[ret]) self.assertIsNotNone(static_ret) with fluid.dygraph.guard(): cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss( weight=fluid.dygraph.to_variable(weight_np), reduction='none') dy_ret = cross_entropy_loss( fluid.dygraph.to_variable(input_np), fluid.dygraph.to_variable(label_np)) dy_ret_value = dy_ret.numpy() self.assertIsNotNone(dy_ret_value) self.assertTrue(np.allclose(static_ret, dy_ret_value)) if __name__ == "__main__": unittest.main()