/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "glog/logging.h" #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/reduce_ops/reduce_op.h" #include "paddle/fluid/operators/solve_op.h" #include "paddle/fluid/operators/tril_triu_op.h" #include "paddle/pten/kernels/funcs/blas/blas.h" #include "paddle/pten/kernels/funcs/complex_functors.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template static void triangular_solve(const DeviceContext& context, const Tensor& x, const Tensor& y, Tensor* out, bool upper, bool transpose, bool unitriangular) { // Tensor broadcast use eigen std::vector x_bst_dims_vec; std::vector y_bst_dims_vec; std::tie(x_bst_dims_vec, y_bst_dims_vec) = get_broadcast_dims(x, y); Tensor x_bst(x.type()); TensorExpand(context, x, &x_bst, x_bst_dims_vec); Tensor y_bst(y.type()); TensorExpand(context, y, &y_bst, y_bst_dims_vec); // TriangularSolveFunctor performs calculations in-place // x_clone should be a copy of 'x' after broadcast // out should be a copy of 'y' after broadcast Tensor x_clone(x.type()); x_clone.Resize(framework::make_ddim(x_bst_dims_vec)); x_clone.mutable_data(context.GetPlace()); framework::TensorCopy(x_bst, context.GetPlace(), context, &x_clone); out->Resize(framework::make_ddim(y_bst_dims_vec)); out->mutable_data(context.GetPlace()); framework::TensorCopy(y_bst, context.GetPlace(), context, out); math::TriangularSolveFunctor functor; functor(context, &x_clone, out, /*left=*/true, upper, transpose, unitriangular); } template class MatrixReduceSumFunctor { public: void operator()(const Tensor& input, Tensor* output, const framework::ExecutionContext& ctx); }; template class MatrixReduceSumFunctor { public: void operator()(const Tensor& in, Tensor* out, const framework::ExecutionContext& ctx) { // For example: in's dim = [5, 3, 2, 7, 3] ; out's dim = [3, 1, 7, 3] // out_reduce_dim should be [0, 2] const std::vector in_dims = framework::vectorize(in.dims()); auto in_size = in_dims.size(); const std::vector out_dims = framework::vectorize(out->dims()); auto out_size = out_dims.size(); std::vector out_bst_dims(in_size); std::fill(out_bst_dims.data(), out_bst_dims.data() + in_size - out_size, 1); std::copy(out_dims.data(), out_dims.data() + out_size, out_bst_dims.data() + in_size - out_size); out->Resize(framework::make_ddim(out_bst_dims)); std::vector out_reduce_dims; for (size_t idx = 0; idx <= in_size - 3; idx++) { if (in_dims[idx] != 1 && out_bst_dims[idx] == 1) { out_reduce_dims.push_back(idx); } } ReduceKernelFunctor( &in, out, out_reduce_dims, true, false, ctx) .template apply(); out->Resize(framework::make_ddim(out_dims)); } }; template class TriangularSolveKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const auto* x = ctx.Input("X"); const auto* y = ctx.Input("Y"); auto* out = ctx.Output("Out"); bool upper = ctx.template Attr("upper"); bool transpose = ctx.template Attr("transpose"); bool unitriangular = ctx.template Attr("unitriangular"); const auto& dev_ctx = ctx.template device_context(); triangular_solve(dev_ctx, *x, *y, out, upper, transpose, unitriangular); } }; template class TriangularSolveGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const auto* x = ctx.Input("X"); const auto* y = ctx.Input("Y"); const auto* out = ctx.Input("Out"); const auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); bool upper = ctx.template Attr("upper"); bool transpose = ctx.template Attr("transpose"); bool unitriangular = ctx.template Attr("unitriangular"); auto& dev_ctx = ctx.template device_context(); std::vector x_bst_dims_vec; std::vector y_bst_dims_vec; std::tie(x_bst_dims_vec, y_bst_dims_vec) = get_broadcast_dims(*x, *y); Tensor dy_bst(y->type()); if (dy) { dy->mutable_data(y->dims(), dev_ctx.GetPlace()); dy_bst.Resize(framework::make_ddim(y_bst_dims_vec)); dy_bst.mutable_data(dev_ctx.GetPlace()); // calculate x's conjugate for complex Tensor x_conj(x->type()); platform::ForRange x_for_range(dev_ctx, x->numel()); pten::funcs::ConjFunctor x_functor( x->data(), x->numel(), x_conj.mutable_data(x->dims(), dev_ctx.GetPlace())); x_for_range(x_functor); // reuse forward to get dy_bst, and the result has been broadcated. triangular_solve(dev_ctx, x_conj, *dout, &dy_bst, upper, !transpose, unitriangular); if (dy_bst.dims() == dy->dims()) { framework::TensorCopy(dy_bst, dev_ctx.GetPlace(), dev_ctx, dy); } else { MatrixReduceSumFunctor functor; functor(dy_bst, dy, ctx); dy->Resize(y->dims()); } } Tensor dx_bst(x->type()); if (dx) { dx->mutable_data(x->dims(), dev_ctx.GetPlace()); dx_bst.Resize(framework::make_ddim(x_bst_dims_vec)); dx_bst.mutable_data(dev_ctx.GetPlace()); // calculate out's conjugate for complex Tensor out_conj(out->type()); platform::ForRange out_for_range(dev_ctx, out->numel()); pten::funcs::ConjFunctor out_functor( out->data(), out->numel(), out_conj.mutable_data(out->dims(), dev_ctx.GetPlace())); out_for_range(out_functor); auto blas = pten::funcs::GetBlas(ctx); if (transpose) { auto mat_dim_a = pten::funcs::CreateMatrixDescriptor(out_conj.dims(), 0, false); auto mat_dim_b = pten::funcs::CreateMatrixDescriptor(dy_bst.dims(), 0, true); blas.MatMul(out_conj, mat_dim_a, dy_bst, mat_dim_b, static_cast(-1), &dx_bst, static_cast(0)); } else { auto mat_dim_a = pten::funcs::CreateMatrixDescriptor(dy_bst.dims(), 0, false); auto mat_dim_b = pten::funcs::CreateMatrixDescriptor(out_conj.dims(), 0, true); blas.MatMul(dy_bst, mat_dim_a, out_conj, mat_dim_b, static_cast(-1), &dx_bst, static_cast(0)); } Tensor dx_bst_upper(x->type()); // get upper or lower triangular dx_bst_upper.Resize(dx_bst.dims()); dx_bst_upper.mutable_data(dev_ctx.GetPlace()); const auto& dims = dx_bst.dims(); const auto H = dims[dims.size() - 2]; const auto W = dims[dims.size() - 1]; platform::ForRange x_for_range(dev_ctx, dx_bst.numel()); TrilTriuCompute tril_triu_computer(dx_bst.data(), unitriangular, !upper, H, W, dx_bst_upper.data()); x_for_range(tril_triu_computer); if (dx_bst_upper.dims() == dx->dims()) { framework::TensorCopy(dx_bst_upper, dev_ctx.GetPlace(), dev_ctx, dx); } else { MatrixReduceSumFunctor functor; functor(dx_bst_upper, dx, ctx); dx->Resize(x->dims()); } } } }; } // namespace operators } // namespace paddle