// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/sequence_ops/sequence_mask_op.h" #include namespace paddle { namespace operators { class SequenceMaskOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must exist"); PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) must exist"); int maxlen = ctx->Attrs().Get("maxlen"); auto dim = framework::vectorize(ctx->GetInputDim("X")); if (ctx->HasInputs("MaxLenTensor")) { dim.push_back(-1); } else { dim.push_back(maxlen > 0 ? maxlen : -1); } ctx->SetOutputDim("Y", framework::make_ddim(dim)); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.device_context()); } framework::OpKernelType GetKernelTypeForVar( const std::string& var_name, const Tensor& tensor, const framework::OpKernelType& expected_kernel_type) const override { if (var_name == "depth_tensor") { return expected_kernel_type; } return framework::OpKernelType(expected_kernel_type.data_type_, tensor.place(), tensor.layout()); } }; class SequenceMaskOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "The input tensor of sequence_mask op."); AddOutput("Y", "The output mask of sequence_mask op."); AddInput("MaxLenTensor", "Max length tensor" "have higher priority than maxlen attribute") .AsDispensable(); AddAttr("maxlen", "The maximum length of the sequence. If maxlen < 0, maxlen " "= max(Input(X)).") .SetDefault(-1) .AddCustomChecker([](const int& v) { PADDLE_ENFORCE(v < 0 || v >= 1, "Attr(maxlen) must be less than 0 or larger than 1"); }); AddAttr("out_dtype", "Output data type"); AddComment(R"DOC( SequenceMask Operator This operator outputs a Mask according to Input(X) and Attr(maxlen). Supposing Input(X) is a Tensor with shape [d_1, d_2, ..., d_n], the Output(Y) is a mask with shape [d_1, d_2, ..., d_n, maxlen], where: Y(i_1, i_2, ..., i_n, j) = (j < X(i_1, i_2, ..., i_n)) If maxlen < 0, maxlen = max(X) )DOC"); } }; } // namespace operators } // namespace paddle REGISTER_OPERATOR( sequence_mask, paddle::operators::SequenceMaskOp, paddle::operators::SequenceMaskOpMaker, paddle::framework::EmptyGradOpMaker, paddle::framework::EmptyGradOpMaker); REGISTER_OP_CPU_KERNEL( sequence_mask, paddle::operators::SequenceMaskKernel, paddle::operators::SequenceMaskKernel, paddle::operators::SequenceMaskKernel, paddle::operators::SequenceMaskKernel);