/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/norm_utils.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; using DataLayout = framework::DataLayout; template using EigenArrayMap = Eigen::Map>; template using ConstEigenArrayMap = Eigen::Map>; template using EigenVectorArrayMap = Eigen::Map>; template using ConstEigenVectorArrayMap = Eigen::Map>; class InstanceNormOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override; }; class InstanceNormGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override; }; class InstanceNormDoubleGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override; protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override; }; class InstanceNormOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override; }; template class InstanceNormGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: std::unique_ptr Apply() const override { auto *op = new T(); op->SetType("instance_norm_grad"); op->SetInput("X", this->Input("X")); op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y")); op->SetInput("Scale", this->Input("Scale")); op->SetInput("Bias", this->Input("Bias")); op->SetInput("SavedMean", this->Output("SavedMean")); op->SetInput("SavedVariance", this->Output("SavedVariance")); op->SetAttrMap(this->Attrs()); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale")); op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias")); return std::unique_ptr(op); } }; template class InstanceNormDoubleGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: std::unique_ptr Apply() const override { auto *op = new T(); op->SetType("instance_norm_grad_grad"); op->SetInput("X", this->Input("X")); op->SetInput("Scale", this->Input("Scale")); op->SetInput("SavedMean", this->Input("SavedMean")); op->SetInput("SavedVariance", this->Input("SavedVariance")); op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X"))); op->SetInput("DDScale", this->OutputGrad(framework::GradVarName("Scale"))); op->SetInput("DDBias", this->OutputGrad(framework::GradVarName("Bias"))); op->SetInput("DY", this->Input(framework::GradVarName("Y"))); op->SetAttrMap(this->Attrs()); op->SetOutput("DX", this->InputGrad("X")); op->SetOutput("DScale", this->InputGrad("Scale")); op->SetOutput("DDY", this->InputGrad(framework::GradVarName("Y"))); return std::unique_ptr(op); } }; class InstanceNormOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput { protected: std::unordered_map GetInputOutputWithSameType() const override { return std::unordered_map{{"X", "Y"}}; } }; template class InstanceNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override; }; template class InstanceNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override; }; template class InstanceNormDoubleGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override; }; } // namespace operators } // namespace paddle