/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" namespace paddle { namespace inference { namespace tensorrt { class Squeeze2OpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { VLOG(4) << "convert a fluid squeeze2 op to tensorrt shuffle layer"; framework::OpDesc op_desc(op, nullptr); // Declare inputs auto* input = engine_->GetITensor(op_desc.Input("X")[0]); auto input_dims = input->getDimensions(); auto output_name = op_desc.Output("Out")[0]; // Get Attrs std::vector axes = BOOST_GET_CONST(std::vector, op_desc.GetAttr("axes")); PADDLE_ENFORCE_GT( axes.size(), 0, platform::errors::InvalidArgument( "Attr(axes).size should be > 0 in squeeze2 op in TensorRT," "but received axes.size() = %d.", axes.size())); std::vector should_squeeze(input_dims.nbDims, false); for (size_t i = 0; i < axes.size(); i++) { if (engine_->with_dynamic_shape()) { axes[i] += (axes[i] < 0) ? input_dims.nbDims : 0; } else { axes[i] += (axes[i] < 0) ? input_dims.nbDims : -1; } should_squeeze[axes[i]] = true; } nvinfer1::Dims trt_out_dims; trt_out_dims.nbDims = 0; std::vector gather_indices; for (size_t i = 0; i < should_squeeze.size(); i++) { if (should_squeeze[i]) continue; gather_indices.push_back(i); // for static shape trt_out_dims.d[trt_out_dims.nbDims] = input_dims.d[i]; trt_out_dims.nbDims++; } auto* layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input); if (engine_->with_dynamic_shape()) { auto* shape_tensor = Shape(input); auto* real_shape_tensor = Gather(shape_tensor, gather_indices); layer->setInput(1, *real_shape_tensor); } else { layer->setReshapeDimensions(trt_out_dims); } RreplenishLayerAndOutput(layer, "squeeze2", {output_name}, test_mode); } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(squeeze2, Squeeze2OpConverter);